Peng Fei , Lin Yangjun , Zhuang Yuee , Lin Ping , Liu Chengzhi , Chen Linlin , Jiang Hong , Lian Yunyang , Zhang Wenzhou , Huang Youxia
{"title":"可产生抗真菌抗生素 Scopafungin 的海洋放线菌--链霉菌 FIM 95-F1 的完整基因组序列","authors":"Peng Fei , Lin Yangjun , Zhuang Yuee , Lin Ping , Liu Chengzhi , Chen Linlin , Jiang Hong , Lian Yunyang , Zhang Wenzhou , Huang Youxia","doi":"10.1016/j.margen.2024.101146","DOIUrl":null,"url":null,"abstract":"<div><p><em>Streptomyces</em> FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of <em>Streptomyces</em> sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that <em>Streptomyces</em> sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complete genome sequence of Streptomyces sp. FIM 95-F1, a marine actinomycete that produces the antifungal antibiotic scopafungin\",\"authors\":\"Peng Fei , Lin Yangjun , Zhuang Yuee , Lin Ping , Liu Chengzhi , Chen Linlin , Jiang Hong , Lian Yunyang , Zhang Wenzhou , Huang Youxia\",\"doi\":\"10.1016/j.margen.2024.101146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Streptomyces</em> FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of <em>Streptomyces</em> sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that <em>Streptomyces</em> sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778724000643\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778724000643","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The complete genome sequence of Streptomyces sp. FIM 95-F1, a marine actinomycete that produces the antifungal antibiotic scopafungin
Streptomyces FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of Streptomyces sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that Streptomyces sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.