Yongming Guan , Yuliang Shi , Gang Wang , Jian Zhang , Xinjun Wang , Zhiyong Chen , Hui Li
{"title":"基于多特征融合和对比学习的用电行为异常检测","authors":"Yongming Guan , Yuliang Shi , Gang Wang , Jian Zhang , Xinjun Wang , Zhiyong Chen , Hui Li","doi":"10.1016/j.is.2024.102457","DOIUrl":null,"url":null,"abstract":"<div><p>Abnormal electricity usage detection is the process of discovering and diagnosing abnormal electricity usage behavior by monitoring and analyzing the electricity usage in the power system. How to improve the accuracy of anomaly detection is a popular research topic. Most studies use neural networks for anomaly detection, but ignore the effect of missing electricity data on anomaly detection performance. Missing value completion is an important method to improve the quality of electricity data and to optimize the anomaly detection performance. Moreover, most studies have ignored the potential correlation relationship between spatial features by modeling the temporal features of electricity data. Therefore, this paper proposes an electricity anomaly detection model based on multi-feature fusion and contrastive learning. The model integrates the temporal and spatial features to jointly accomplish electricity anomaly detection. In terms of temporal feature representation learning, an improved bi-directional LSTM is designed to achieve the missing value completion of electricity data, and combined with CNN to capture the electricity consumption behavior patterns in the temporal data. In terms of spatial feature representation learning, GCN and Transformer are used to fully explore the complex correlation relationships among data. In addition, in order to improve the performance of anomaly detection, this paper also designs a gated fusion module and combines the idea of contrastive learning to strengthen the representation ability of electricity data. Finally, we demonstrate through experiments that the method proposed in this paper can effectively improve the performance of electricity behavior anomaly detection.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"127 ","pages":"Article 102457"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity behaviors anomaly detection based on multi-feature fusion and contrastive learning\",\"authors\":\"Yongming Guan , Yuliang Shi , Gang Wang , Jian Zhang , Xinjun Wang , Zhiyong Chen , Hui Li\",\"doi\":\"10.1016/j.is.2024.102457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Abnormal electricity usage detection is the process of discovering and diagnosing abnormal electricity usage behavior by monitoring and analyzing the electricity usage in the power system. How to improve the accuracy of anomaly detection is a popular research topic. Most studies use neural networks for anomaly detection, but ignore the effect of missing electricity data on anomaly detection performance. Missing value completion is an important method to improve the quality of electricity data and to optimize the anomaly detection performance. Moreover, most studies have ignored the potential correlation relationship between spatial features by modeling the temporal features of electricity data. Therefore, this paper proposes an electricity anomaly detection model based on multi-feature fusion and contrastive learning. The model integrates the temporal and spatial features to jointly accomplish electricity anomaly detection. In terms of temporal feature representation learning, an improved bi-directional LSTM is designed to achieve the missing value completion of electricity data, and combined with CNN to capture the electricity consumption behavior patterns in the temporal data. In terms of spatial feature representation learning, GCN and Transformer are used to fully explore the complex correlation relationships among data. In addition, in order to improve the performance of anomaly detection, this paper also designs a gated fusion module and combines the idea of contrastive learning to strengthen the representation ability of electricity data. Finally, we demonstrate through experiments that the method proposed in this paper can effectively improve the performance of electricity behavior anomaly detection.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"127 \",\"pages\":\"Article 102457\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924001157\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001157","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Electricity behaviors anomaly detection based on multi-feature fusion and contrastive learning
Abnormal electricity usage detection is the process of discovering and diagnosing abnormal electricity usage behavior by monitoring and analyzing the electricity usage in the power system. How to improve the accuracy of anomaly detection is a popular research topic. Most studies use neural networks for anomaly detection, but ignore the effect of missing electricity data on anomaly detection performance. Missing value completion is an important method to improve the quality of electricity data and to optimize the anomaly detection performance. Moreover, most studies have ignored the potential correlation relationship between spatial features by modeling the temporal features of electricity data. Therefore, this paper proposes an electricity anomaly detection model based on multi-feature fusion and contrastive learning. The model integrates the temporal and spatial features to jointly accomplish electricity anomaly detection. In terms of temporal feature representation learning, an improved bi-directional LSTM is designed to achieve the missing value completion of electricity data, and combined with CNN to capture the electricity consumption behavior patterns in the temporal data. In terms of spatial feature representation learning, GCN and Transformer are used to fully explore the complex correlation relationships among data. In addition, in order to improve the performance of anomaly detection, this paper also designs a gated fusion module and combines the idea of contrastive learning to strengthen the representation ability of electricity data. Finally, we demonstrate through experiments that the method proposed in this paper can effectively improve the performance of electricity behavior anomaly detection.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.