{"title":"水杨梅甙能防止氯化镉诱导的人胎儿肺成纤维细胞DNA损伤。","authors":"Yufei Wu , Chuan Sun","doi":"10.1016/j.jtemb.2024.127521","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cadmium (Cd) is an environmental pollutant and a heavy metal known for its genotoxic effects, which can lead to cancer and other related diseases. Preventing Cd-induced genotoxicity is crucial; however, there is limited research on this topic. Salidroside (SAL), a phenylpropanoid glycoside isolated from <em>Rhodiola rosea L</em>., is a popular medicinal compound with several health benefits. Nevertheless, its therapeutic effect on Cd-induced genotoxicity remains unexplored.</p></div><div><h3>Methods</h3><p>Human fetal lung fibroblasts were treated with 20 μM Cd<sup>2+</sup> (CdCl<sub>2</sub>) for 12 h and 5–20 μM SAL was used to test the anti-DNA damage effect. DNA damage was evaluated using γH2AX expression and the alkaline comet assay. Intracellular reactive oxygen species (ROS) levels were measured using flow cytometry.</p></div><div><h3>Results</h3><p>Exposure to 20 μM Cd<sup>2+</sup> for 12 h induced significant DNA damage in human fetal lung fibroblasts, and this effect was notably attenuated by SAL treatment. SAL treatment did not decrease ROS levels in cells treated with Cd<sup>2+</sup>.</p></div><div><h3>Conclusion</h3><p>SAL effectively prevented Cd<sup>2+</sup>-induced DNA damage in human fetal lung fibroblasts. However, the underlying mechanism requires further investigation.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127521"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salidroside prevents cadmium chloride-induced DNA damage in human fetal lung fibroblasts\",\"authors\":\"Yufei Wu , Chuan Sun\",\"doi\":\"10.1016/j.jtemb.2024.127521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Cadmium (Cd) is an environmental pollutant and a heavy metal known for its genotoxic effects, which can lead to cancer and other related diseases. Preventing Cd-induced genotoxicity is crucial; however, there is limited research on this topic. Salidroside (SAL), a phenylpropanoid glycoside isolated from <em>Rhodiola rosea L</em>., is a popular medicinal compound with several health benefits. Nevertheless, its therapeutic effect on Cd-induced genotoxicity remains unexplored.</p></div><div><h3>Methods</h3><p>Human fetal lung fibroblasts were treated with 20 μM Cd<sup>2+</sup> (CdCl<sub>2</sub>) for 12 h and 5–20 μM SAL was used to test the anti-DNA damage effect. DNA damage was evaluated using γH2AX expression and the alkaline comet assay. Intracellular reactive oxygen species (ROS) levels were measured using flow cytometry.</p></div><div><h3>Results</h3><p>Exposure to 20 μM Cd<sup>2+</sup> for 12 h induced significant DNA damage in human fetal lung fibroblasts, and this effect was notably attenuated by SAL treatment. SAL treatment did not decrease ROS levels in cells treated with Cd<sup>2+</sup>.</p></div><div><h3>Conclusion</h3><p>SAL effectively prevented Cd<sup>2+</sup>-induced DNA damage in human fetal lung fibroblasts. However, the underlying mechanism requires further investigation.</p></div>\",\"PeriodicalId\":49970,\"journal\":{\"name\":\"Journal of Trace Elements in Medicine and Biology\",\"volume\":\"86 \",\"pages\":\"Article 127521\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Trace Elements in Medicine and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0946672X2400141X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X2400141X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:镉(Cd)是一种环境污染物和重金属,因其基因毒性作用而闻名,可导致癌症和其他相关疾病。预防镉诱导的基因毒性至关重要,但这方面的研究却很有限。红景天苷(SAL)是从红景天中分离出来的一种苯基丙酮苷,是一种广受欢迎的药用化合物,具有多种保健功效。方法:用 20 μM Cd2+ (CdCl2) 处理人胎肺成纤维细胞 12 小时,用 5-20 μM SAL 测试抗 DNA 损伤效果。DNA 损伤通过 γH2AX 表达和碱性彗星试验进行评估。使用流式细胞仪测量细胞内活性氧(ROS)水平:结果:将 20 μM Cd2+ 暴露于人胎儿肺成纤维细胞 12 小时会诱发严重的 DNA 损伤,而 SAL 处理会明显减轻这种影响。结论:SAL 能有效防止 Cd2+ 对细胞的损伤:结论:SAL 能有效防止 Cd2+ 诱导的人胎儿肺成纤维细胞 DNA 损伤。结论:SAL 能有效防止 Cd2+ 诱导的人胎儿肺成纤维细胞 DNA 损伤,但其潜在机制仍需进一步研究。
Salidroside prevents cadmium chloride-induced DNA damage in human fetal lung fibroblasts
Background
Cadmium (Cd) is an environmental pollutant and a heavy metal known for its genotoxic effects, which can lead to cancer and other related diseases. Preventing Cd-induced genotoxicity is crucial; however, there is limited research on this topic. Salidroside (SAL), a phenylpropanoid glycoside isolated from Rhodiola rosea L., is a popular medicinal compound with several health benefits. Nevertheless, its therapeutic effect on Cd-induced genotoxicity remains unexplored.
Methods
Human fetal lung fibroblasts were treated with 20 μM Cd2+ (CdCl2) for 12 h and 5–20 μM SAL was used to test the anti-DNA damage effect. DNA damage was evaluated using γH2AX expression and the alkaline comet assay. Intracellular reactive oxygen species (ROS) levels were measured using flow cytometry.
Results
Exposure to 20 μM Cd2+ for 12 h induced significant DNA damage in human fetal lung fibroblasts, and this effect was notably attenuated by SAL treatment. SAL treatment did not decrease ROS levels in cells treated with Cd2+.
Conclusion
SAL effectively prevented Cd2+-induced DNA damage in human fetal lung fibroblasts. However, the underlying mechanism requires further investigation.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.