Zhong Sheng Zheng , Kevin Xing-Long Wang , Henry Millan , Sharon Lee , Melissa Howard , Aaron Rothbart , Emily Rosario , Caroline Schnakers
{"title":"经颅直接刺激左额叶下回可提高中风后失语症患者的语言能力和理解能力:一项双盲随机对照研究。","authors":"Zhong Sheng Zheng , Kevin Xing-Long Wang , Henry Millan , Sharon Lee , Melissa Howard , Aaron Rothbart , Emily Rosario , Caroline Schnakers","doi":"10.1016/j.bandl.2024.105459","DOIUrl":null,"url":null,"abstract":"<div><p>Transcranial direct current stimulation (tDCS) targeting Broca’s area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca’s tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca’s area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.</p></div>","PeriodicalId":55330,"journal":{"name":"Brain and Language","volume":"257 ","pages":"Article 105459"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcranial direct stimulation over left inferior frontal gyrus improves language production and comprehension in post-stroke aphasia: A double-blind randomized controlled study\",\"authors\":\"Zhong Sheng Zheng , Kevin Xing-Long Wang , Henry Millan , Sharon Lee , Melissa Howard , Aaron Rothbart , Emily Rosario , Caroline Schnakers\",\"doi\":\"10.1016/j.bandl.2024.105459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcranial direct current stimulation (tDCS) targeting Broca’s area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca’s tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca’s area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.</p></div>\",\"PeriodicalId\":55330,\"journal\":{\"name\":\"Brain and Language\",\"volume\":\"257 \",\"pages\":\"Article 105459\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Language\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093934X24000828\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Language","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093934X24000828","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Transcranial direct stimulation over left inferior frontal gyrus improves language production and comprehension in post-stroke aphasia: A double-blind randomized controlled study
Transcranial direct current stimulation (tDCS) targeting Broca’s area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca’s tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca’s area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.
期刊介绍:
An interdisciplinary journal, Brain and Language publishes articles that elucidate the complex relationships among language, brain, and behavior. The journal covers the large variety of modern techniques in cognitive neuroscience, including functional and structural brain imaging, electrophysiology, cellular and molecular neurobiology, genetics, lesion-based approaches, and computational modeling. All articles must relate to human language and be relevant to the understanding of its neurobiological and neurocognitive bases. Published articles in the journal are expected to have significant theoretical novelty and/or practical implications, and use perspectives and methods from psychology, linguistics, and neuroscience along with brain data and brain measures.