肥胖预测:机器学习对腰围准确性的新见解。

IF 4.3 Q1 ENDOCRINOLOGY & METABOLISM
Carl Harris , Daniel Olshvang , Rama Chellappa , Prasanna Santhanam
{"title":"肥胖预测:机器学习对腰围准确性的新见解。","authors":"Carl Harris ,&nbsp;Daniel Olshvang ,&nbsp;Rama Chellappa ,&nbsp;Prasanna Santhanam","doi":"10.1016/j.dsx.2024.103113","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><p>This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.</p></div><div><h3>Methods</h3><p>We utilized data from the NHANES and Look AHEAD studies, applying machine learning algorithms augmented with uncertainty quantification. Our approach centered on conformal prediction techniques, which provide a methodological basis for generating prediction intervals that reflect uncertainty levels. This method allows for constructing intervals expected to contain the true waist circumference values with a high degree of probability.</p></div><div><h3>Results</h3><p>The application of conformal predictions yielded high coverage rates, achieving 0.955 for men and 0.954 for women in the NHANES dataset. These rates surpassed the expected performance benchmarks and demonstrated robustness when applied to the Look AHEAD dataset, maintaining coverage rates of 0.951 for men and 0.952 for women. Traditional point prediction models did not show such high consistency or reliability.</p></div><div><h3>Conclusions</h3><p>The findings support the integration of waist circumference into standard clinical practice for obesity-related risk assessments using machine learning approaches.</p></div>","PeriodicalId":48252,"journal":{"name":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","volume":"18 8","pages":"Article 103113"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obesity prediction: Novel machine learning insights into waist circumference accuracy\",\"authors\":\"Carl Harris ,&nbsp;Daniel Olshvang ,&nbsp;Rama Chellappa ,&nbsp;Prasanna Santhanam\",\"doi\":\"10.1016/j.dsx.2024.103113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><p>This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.</p></div><div><h3>Methods</h3><p>We utilized data from the NHANES and Look AHEAD studies, applying machine learning algorithms augmented with uncertainty quantification. Our approach centered on conformal prediction techniques, which provide a methodological basis for generating prediction intervals that reflect uncertainty levels. This method allows for constructing intervals expected to contain the true waist circumference values with a high degree of probability.</p></div><div><h3>Results</h3><p>The application of conformal predictions yielded high coverage rates, achieving 0.955 for men and 0.954 for women in the NHANES dataset. These rates surpassed the expected performance benchmarks and demonstrated robustness when applied to the Look AHEAD dataset, maintaining coverage rates of 0.951 for men and 0.952 for women. Traditional point prediction models did not show such high consistency or reliability.</p></div><div><h3>Conclusions</h3><p>The findings support the integration of waist circumference into standard clinical practice for obesity-related risk assessments using machine learning approaches.</p></div>\",\"PeriodicalId\":48252,\"journal\":{\"name\":\"Diabetes & Metabolic Syndrome-Clinical Research & Reviews\",\"volume\":\"18 8\",\"pages\":\"Article 103113\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Metabolic Syndrome-Clinical Research & Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871402124001747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolic Syndrome-Clinical Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871402124001747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在利用机器学习技术提高腰围预测的准确性,从而提高肥胖风险评估的准确性:我们利用了 NHANES 和 Look AHEAD 研究的数据,应用了机器学习算法,并对不确定性进行了量化。我们的方法以保形预测技术为核心,该技术为生成反映不确定性水平的预测区间提供了方法论基础。这种方法可以构建出预计包含真实腰围值的区间,并具有很高的概率:在 NHANES 数据集中,保形预测的应用产生了很高的覆盖率,男性达到了 0.955,女性达到了 0.954。这些覆盖率超过了预期的性能基准,并在应用于 "展望未来 "数据集时表现出稳健性,男性覆盖率保持在 0.951,女性覆盖率保持在 0.952。传统的点预测模型没有表现出如此高的一致性和可靠性:研究结果支持使用机器学习方法将腰围纳入肥胖相关风险评估的标准临床实践中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obesity prediction: Novel machine learning insights into waist circumference accuracy

Aims

This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.

Methods

We utilized data from the NHANES and Look AHEAD studies, applying machine learning algorithms augmented with uncertainty quantification. Our approach centered on conformal prediction techniques, which provide a methodological basis for generating prediction intervals that reflect uncertainty levels. This method allows for constructing intervals expected to contain the true waist circumference values with a high degree of probability.

Results

The application of conformal predictions yielded high coverage rates, achieving 0.955 for men and 0.954 for women in the NHANES dataset. These rates surpassed the expected performance benchmarks and demonstrated robustness when applied to the Look AHEAD dataset, maintaining coverage rates of 0.951 for men and 0.952 for women. Traditional point prediction models did not show such high consistency or reliability.

Conclusions

The findings support the integration of waist circumference into standard clinical practice for obesity-related risk assessments using machine learning approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.90
自引率
2.00%
发文量
248
审稿时长
51 days
期刊介绍: Diabetes and Metabolic Syndrome: Clinical Research and Reviews is the official journal of DiabetesIndia. It aims to provide a global platform for healthcare professionals, diabetes educators, and other stakeholders to submit their research on diabetes care. Types of Publications: Diabetes and Metabolic Syndrome: Clinical Research and Reviews publishes peer-reviewed original articles, reviews, short communications, case reports, letters to the Editor, and expert comments. Reviews and mini-reviews are particularly welcomed for areas within endocrinology undergoing rapid changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信