Pablo Bastante, Thomas Pucher, Andres Castellanos-Gomez
{"title":"真空热退火和空气暴露对单层 MoS2 器件性能的影响。","authors":"Pablo Bastante, Thomas Pucher, Andres Castellanos-Gomez","doi":"10.1088/1361-6528/ad77dc","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional semiconducting materials such as MoS<sub>2</sub>have gained significant attention for potential applications in electronic components due to their reduced dimensionality and exceptional electrical and optoelectronic properties. However, when reporting the performance of such 2D-based devices, one needs to consider the effect of the environment in which the characterization is carried out. Air exposure has a non-negligible impact on the electronic performance and vacuum thermal annealing is an established method to decrease the effects of adsorbates. Nevertheless, when measurements are performed in ambient conditions these effects arise again. In this work, we study the changes in the electrical and optoelectronic properties of single-layer MoS<sub>2</sub>-based devices at air exposure after thermal annealing treatment. Measurements are carried out in an<i>in-situ</i>vacuum thermal annealing system, enabling the recording of electrical performance degradation over time. Moreover, this work shows how hexagonal boron nitride (hBN) capping improves device performance, both in vacuum and after venting, as well as stability, by decreasing the degradation speed by around six times. The results suggest that vacuum thermal annealing and hBN capping are methods to mitigate the effects of air environment on these devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of vacuum thermal annealing and air exposure on the performance of single-layer MoS<sub>2</sub>devices.\",\"authors\":\"Pablo Bastante, Thomas Pucher, Andres Castellanos-Gomez\",\"doi\":\"10.1088/1361-6528/ad77dc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional semiconducting materials such as MoS<sub>2</sub>have gained significant attention for potential applications in electronic components due to their reduced dimensionality and exceptional electrical and optoelectronic properties. However, when reporting the performance of such 2D-based devices, one needs to consider the effect of the environment in which the characterization is carried out. Air exposure has a non-negligible impact on the electronic performance and vacuum thermal annealing is an established method to decrease the effects of adsorbates. Nevertheless, when measurements are performed in ambient conditions these effects arise again. In this work, we study the changes in the electrical and optoelectronic properties of single-layer MoS<sub>2</sub>-based devices at air exposure after thermal annealing treatment. Measurements are carried out in an<i>in-situ</i>vacuum thermal annealing system, enabling the recording of electrical performance degradation over time. Moreover, this work shows how hexagonal boron nitride (hBN) capping improves device performance, both in vacuum and after venting, as well as stability, by decreasing the degradation speed by around six times. The results suggest that vacuum thermal annealing and hBN capping are methods to mitigate the effects of air environment on these devices.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad77dc\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad77dc","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of vacuum thermal annealing and air exposure on the performance of single-layer MoS2devices.
Two-dimensional semiconducting materials such as MoS2have gained significant attention for potential applications in electronic components due to their reduced dimensionality and exceptional electrical and optoelectronic properties. However, when reporting the performance of such 2D-based devices, one needs to consider the effect of the environment in which the characterization is carried out. Air exposure has a non-negligible impact on the electronic performance and vacuum thermal annealing is an established method to decrease the effects of adsorbates. Nevertheless, when measurements are performed in ambient conditions these effects arise again. In this work, we study the changes in the electrical and optoelectronic properties of single-layer MoS2-based devices at air exposure after thermal annealing treatment. Measurements are carried out in anin-situvacuum thermal annealing system, enabling the recording of electrical performance degradation over time. Moreover, this work shows how hexagonal boron nitride (hBN) capping improves device performance, both in vacuum and after venting, as well as stability, by decreasing the degradation speed by around six times. The results suggest that vacuum thermal annealing and hBN capping are methods to mitigate the effects of air environment on these devices.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.