Jingchen Zhong, Xiaojie Li, Mengqian Yuan, Dong Chen, Yancai Li, Xiaoyang Lian, Ming Wang
{"title":"2 型糖尿病患者血清的代谢组学研究:周围神经病变可能与鞘磷脂和磷脂分子有关。","authors":"Jingchen Zhong, Xiaojie Li, Mengqian Yuan, Dong Chen, Yancai Li, Xiaoyang Lian, Ming Wang","doi":"10.1002/lipd.12412","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal lipid metabolism is one of the risk factors for type 2 diabetes mellitus peripheral neuropathy (DPN). This study aimed to determine the differences in lipid metabolism in patients with type 2 diabetes and DPN and the possible pathogenesis caused by this difference. The participants comprised type 2 diabetes mellitus patients with DPN (N = 60) and healthy controls (N = 20). Blood samples were drawn from the participants in the morning in the fasting state, and then changes in serum lipids were explored using targeted metabolomics on the liquid chromatography-electrospray ionization-tandem mass spectrometry platform. Among the 1768 differentially abundant lipid metabolites, the results of orthogonal partial least squares-discriminant analysis combined with random forest analysis showed that the levels of sphingosine (SPH) (d18:0), carnitine 22:1, lysophosphatidylethanolamine (LPE) (18:0/0:0), LPC (16:0/0:0), lysophosphatidylcholine (LPC) (18:1/0:0), LPC (0:0/18:0) and LPE (0:0/18:1) were significantly different between the two groups. Spearman correlation analysis showed that SPH (d18:0), carnitine 22:1, LPE (18:0/0:0), and LPC (0:0/18:0) levels correlated highly with the patients' electromyography results. Kyoto Encyclopedia of Genes and Genomes pathway annotation and enrichment analysis of 538 differentially abundant lipid metabolites revealed that type 2 diabetes mellitus DPN was related to glycerophospholipid metabolism and glycerol metabolism. Our results further identified the dangerous lipid metabolites associated with DPN and abnormal lipid metabolism. The influence of lipid metabolites such as SPH and phospholipid molecules on DPN development in patients with type 2 diabetes mellitus were suggested and the possible pathogenic pathways were clarified, providing new insights into the clinical risk of DPN in patients with type 2 diabetes mellitus.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":" ","pages":"3-13"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomics study of serum from patients with type 2 diabetes: Peripheral neuropathy could be associated with sphingosine and phospholipid molecules.\",\"authors\":\"Jingchen Zhong, Xiaojie Li, Mengqian Yuan, Dong Chen, Yancai Li, Xiaoyang Lian, Ming Wang\",\"doi\":\"10.1002/lipd.12412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abnormal lipid metabolism is one of the risk factors for type 2 diabetes mellitus peripheral neuropathy (DPN). This study aimed to determine the differences in lipid metabolism in patients with type 2 diabetes and DPN and the possible pathogenesis caused by this difference. The participants comprised type 2 diabetes mellitus patients with DPN (N = 60) and healthy controls (N = 20). Blood samples were drawn from the participants in the morning in the fasting state, and then changes in serum lipids were explored using targeted metabolomics on the liquid chromatography-electrospray ionization-tandem mass spectrometry platform. Among the 1768 differentially abundant lipid metabolites, the results of orthogonal partial least squares-discriminant analysis combined with random forest analysis showed that the levels of sphingosine (SPH) (d18:0), carnitine 22:1, lysophosphatidylethanolamine (LPE) (18:0/0:0), LPC (16:0/0:0), lysophosphatidylcholine (LPC) (18:1/0:0), LPC (0:0/18:0) and LPE (0:0/18:1) were significantly different between the two groups. Spearman correlation analysis showed that SPH (d18:0), carnitine 22:1, LPE (18:0/0:0), and LPC (0:0/18:0) levels correlated highly with the patients' electromyography results. Kyoto Encyclopedia of Genes and Genomes pathway annotation and enrichment analysis of 538 differentially abundant lipid metabolites revealed that type 2 diabetes mellitus DPN was related to glycerophospholipid metabolism and glycerol metabolism. Our results further identified the dangerous lipid metabolites associated with DPN and abnormal lipid metabolism. The influence of lipid metabolites such as SPH and phospholipid molecules on DPN development in patients with type 2 diabetes mellitus were suggested and the possible pathogenic pathways were clarified, providing new insights into the clinical risk of DPN in patients with type 2 diabetes mellitus.</p>\",\"PeriodicalId\":18086,\"journal\":{\"name\":\"Lipids\",\"volume\":\" \",\"pages\":\"3-13\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/lipd.12412\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/lipd.12412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolomics study of serum from patients with type 2 diabetes: Peripheral neuropathy could be associated with sphingosine and phospholipid molecules.
Abnormal lipid metabolism is one of the risk factors for type 2 diabetes mellitus peripheral neuropathy (DPN). This study aimed to determine the differences in lipid metabolism in patients with type 2 diabetes and DPN and the possible pathogenesis caused by this difference. The participants comprised type 2 diabetes mellitus patients with DPN (N = 60) and healthy controls (N = 20). Blood samples were drawn from the participants in the morning in the fasting state, and then changes in serum lipids were explored using targeted metabolomics on the liquid chromatography-electrospray ionization-tandem mass spectrometry platform. Among the 1768 differentially abundant lipid metabolites, the results of orthogonal partial least squares-discriminant analysis combined with random forest analysis showed that the levels of sphingosine (SPH) (d18:0), carnitine 22:1, lysophosphatidylethanolamine (LPE) (18:0/0:0), LPC (16:0/0:0), lysophosphatidylcholine (LPC) (18:1/0:0), LPC (0:0/18:0) and LPE (0:0/18:1) were significantly different between the two groups. Spearman correlation analysis showed that SPH (d18:0), carnitine 22:1, LPE (18:0/0:0), and LPC (0:0/18:0) levels correlated highly with the patients' electromyography results. Kyoto Encyclopedia of Genes and Genomes pathway annotation and enrichment analysis of 538 differentially abundant lipid metabolites revealed that type 2 diabetes mellitus DPN was related to glycerophospholipid metabolism and glycerol metabolism. Our results further identified the dangerous lipid metabolites associated with DPN and abnormal lipid metabolism. The influence of lipid metabolites such as SPH and phospholipid molecules on DPN development in patients with type 2 diabetes mellitus were suggested and the possible pathogenic pathways were clarified, providing new insights into the clinical risk of DPN in patients with type 2 diabetes mellitus.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.