{"title":"在小鼠模型中利用经颅磁刺激治疗创伤后应激障碍的机制。","authors":"","doi":"10.1016/j.jpsychires.2024.08.041","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Posttraumatic stress disorder (PTSD) is a psychiatric disease that may follow traumatic exposure. Current treatments fail in about 30% of patients. Although repeated transcranial magnetic stimulation (rTMS) applied to the prefrontal cortex has been shown to be effective in the treatment of PTSD, the mechanisms need further investigation.</p></div><div><h3>Objective</h3><p>Using a PTSD animal model, we verify the beneficial effect of rTMS, and explore the changes it induces on two putative PTSD mechanisms, GABA/glutamate neurotransmission and neuroinflammation.</p></div><div><h3>Methods</h3><p>PTSD-like symptoms were elicited in twenty-six mice using a foot-shock conditioning procedure. Fourteen of the 26 were then treated using rTMS (12 were untreated). In the control group (<em>n</em> = 30), 18 were treated with rTMS and 12 were untreated. Animals were sacrificed after re-exposure. The infralimbic (IL) cortex, basolateral amygdala (BLA) and ventral CA1 (vCA1) were isolated using laser microdissection. mRNA was then investigated using PCR array analysis targeting GABA/glutamate and inflammatory pathways.</p></div><div><h3>Results</h3><p>The rTMS treatment significantly decreased the contextual fear memory phenotype. These changes were associated with reduced mRNA expression related to inflammation in the IL cortex and the vCA1, and lowered mRNA-related glutamate neurotransmission and increased GABA neurotransmission in the BLA.</p></div><div><h3>Conclusion</h3><p>Our results suggest that our rTMS treatment was associated with local anti-inflammatory effects and limbic effects, which seemed to counteract PTSD effects. Several of these changes (both stress- and rTMS-induced) have implications for the drug sensitivity of limbic brain areas, and may help in the design of future therapeutic protocols.</p></div>","PeriodicalId":16868,"journal":{"name":"Journal of psychiatric research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022395624005065/pdfft?md5=a2922bed81f5f9208ebdee4eabe02b44&pid=1-s2.0-S0022395624005065-main.pdf","citationCount":"0","resultStr":"{\"title\":\"rTMS mechanisms for posttraumatic stress disorder treatment in a mouse model\",\"authors\":\"\",\"doi\":\"10.1016/j.jpsychires.2024.08.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Posttraumatic stress disorder (PTSD) is a psychiatric disease that may follow traumatic exposure. Current treatments fail in about 30% of patients. Although repeated transcranial magnetic stimulation (rTMS) applied to the prefrontal cortex has been shown to be effective in the treatment of PTSD, the mechanisms need further investigation.</p></div><div><h3>Objective</h3><p>Using a PTSD animal model, we verify the beneficial effect of rTMS, and explore the changes it induces on two putative PTSD mechanisms, GABA/glutamate neurotransmission and neuroinflammation.</p></div><div><h3>Methods</h3><p>PTSD-like symptoms were elicited in twenty-six mice using a foot-shock conditioning procedure. Fourteen of the 26 were then treated using rTMS (12 were untreated). In the control group (<em>n</em> = 30), 18 were treated with rTMS and 12 were untreated. Animals were sacrificed after re-exposure. The infralimbic (IL) cortex, basolateral amygdala (BLA) and ventral CA1 (vCA1) were isolated using laser microdissection. mRNA was then investigated using PCR array analysis targeting GABA/glutamate and inflammatory pathways.</p></div><div><h3>Results</h3><p>The rTMS treatment significantly decreased the contextual fear memory phenotype. These changes were associated with reduced mRNA expression related to inflammation in the IL cortex and the vCA1, and lowered mRNA-related glutamate neurotransmission and increased GABA neurotransmission in the BLA.</p></div><div><h3>Conclusion</h3><p>Our results suggest that our rTMS treatment was associated with local anti-inflammatory effects and limbic effects, which seemed to counteract PTSD effects. Several of these changes (both stress- and rTMS-induced) have implications for the drug sensitivity of limbic brain areas, and may help in the design of future therapeutic protocols.</p></div>\",\"PeriodicalId\":16868,\"journal\":{\"name\":\"Journal of psychiatric research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022395624005065/pdfft?md5=a2922bed81f5f9208ebdee4eabe02b44&pid=1-s2.0-S0022395624005065-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of psychiatric research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022395624005065\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of psychiatric research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022395624005065","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
rTMS mechanisms for posttraumatic stress disorder treatment in a mouse model
Background
Posttraumatic stress disorder (PTSD) is a psychiatric disease that may follow traumatic exposure. Current treatments fail in about 30% of patients. Although repeated transcranial magnetic stimulation (rTMS) applied to the prefrontal cortex has been shown to be effective in the treatment of PTSD, the mechanisms need further investigation.
Objective
Using a PTSD animal model, we verify the beneficial effect of rTMS, and explore the changes it induces on two putative PTSD mechanisms, GABA/glutamate neurotransmission and neuroinflammation.
Methods
PTSD-like symptoms were elicited in twenty-six mice using a foot-shock conditioning procedure. Fourteen of the 26 were then treated using rTMS (12 were untreated). In the control group (n = 30), 18 were treated with rTMS and 12 were untreated. Animals were sacrificed after re-exposure. The infralimbic (IL) cortex, basolateral amygdala (BLA) and ventral CA1 (vCA1) were isolated using laser microdissection. mRNA was then investigated using PCR array analysis targeting GABA/glutamate and inflammatory pathways.
Results
The rTMS treatment significantly decreased the contextual fear memory phenotype. These changes were associated with reduced mRNA expression related to inflammation in the IL cortex and the vCA1, and lowered mRNA-related glutamate neurotransmission and increased GABA neurotransmission in the BLA.
Conclusion
Our results suggest that our rTMS treatment was associated with local anti-inflammatory effects and limbic effects, which seemed to counteract PTSD effects. Several of these changes (both stress- and rTMS-induced) have implications for the drug sensitivity of limbic brain areas, and may help in the design of future therapeutic protocols.
期刊介绍:
Founded in 1961 to report on the latest work in psychiatry and cognate disciplines, the Journal of Psychiatric Research is dedicated to innovative and timely studies of four important areas of research:
(1) clinical studies of all disciplines relating to psychiatric illness, as well as normal human behaviour, including biochemical, physiological, genetic, environmental, social, psychological and epidemiological factors;
(2) basic studies pertaining to psychiatry in such fields as neuropsychopharmacology, neuroendocrinology, electrophysiology, genetics, experimental psychology and epidemiology;
(3) the growing application of clinical laboratory techniques in psychiatry, including imagery and spectroscopy of the brain, molecular biology and computer sciences;