三角形晶格磁体中丰富的马格农拓扑结构

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Haodong Yu, Lin Hu, Fawei Zheng, Yugui Yao
{"title":"三角形晶格磁体中丰富的马格农拓扑结构","authors":"Haodong Yu, Lin Hu, Fawei Zheng, Yugui Yao","doi":"10.1088/1361-648X/ad7805","DOIUrl":null,"url":null,"abstract":"<p><p>The two-dimensional magnet has been an emerging and rapidly growing field. The nontrivial topological phenomenon in these materials is an attracting subject. Yet, the realization of such magnets exhibiting topological magnons remains a challenge. Here, employing the linear spin-wave theory and the first-principles calculations, we propose that variety of topological phases exist in the triangular ferromagnet. These include magnon Chern insulators and high-order topological insulators. Interestingly, these topological states can coexist within a certain parameter space, leading to a hybrid topological state. We propose that these topological phases can be realized via atomic substitutions inMnSe2orMnTe2single-layers. The following detailed analysis suggests that non-uniform Dzyaloshinsky-Moriya interactions are crucial in achieving topological magnons. Our work unveil a unique approach to obtaining non-trivial topological magnons in two-dimensional materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rich magnon topology in triangular lattice magnets.\",\"authors\":\"Haodong Yu, Lin Hu, Fawei Zheng, Yugui Yao\",\"doi\":\"10.1088/1361-648X/ad7805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The two-dimensional magnet has been an emerging and rapidly growing field. The nontrivial topological phenomenon in these materials is an attracting subject. Yet, the realization of such magnets exhibiting topological magnons remains a challenge. Here, employing the linear spin-wave theory and the first-principles calculations, we propose that variety of topological phases exist in the triangular ferromagnet. These include magnon Chern insulators and high-order topological insulators. Interestingly, these topological states can coexist within a certain parameter space, leading to a hybrid topological state. We propose that these topological phases can be realized via atomic substitutions inMnSe2orMnTe2single-layers. The following detailed analysis suggests that non-uniform Dzyaloshinsky-Moriya interactions are crucial in achieving topological magnons. Our work unveil a unique approach to obtaining non-trivial topological magnons in two-dimensional materials.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7805\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7805","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

二维磁体是一个新兴且发展迅速的领域。这些材料中的非微观拓扑现象是一个吸引人的话题。然而,如何实现这种表现出拓扑磁子的磁体仍然是一个挑战。在此,我们利用线性自旋波理论和第一性原理计算,提出了三元铁磁体中存在的各种拓扑相。其中包括磁子切尔纳绝缘体和高阶拓扑绝缘体。有趣的是,这些拓扑态可以在一定的参数空间内共存,从而形成混合拓扑态。我们提出,这些新型拓扑相可以通过在 MnSe2 或 MnTe2 单层中进行原子置换来实现。接下来的详细分析表明,非均匀的 Dzyaloshinsky-Moriya 相互作用是实现拓扑磁子的关键。我们的研究揭示了一种在二维材料中获得非三维拓扑磁子的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rich magnon topology in triangular lattice magnets.

The two-dimensional magnet has been an emerging and rapidly growing field. The nontrivial topological phenomenon in these materials is an attracting subject. Yet, the realization of such magnets exhibiting topological magnons remains a challenge. Here, employing the linear spin-wave theory and the first-principles calculations, we propose that variety of topological phases exist in the triangular ferromagnet. These include magnon Chern insulators and high-order topological insulators. Interestingly, these topological states can coexist within a certain parameter space, leading to a hybrid topological state. We propose that these topological phases can be realized via atomic substitutions inMnSe2orMnTe2single-layers. The following detailed analysis suggests that non-uniform Dzyaloshinsky-Moriya interactions are crucial in achieving topological magnons. Our work unveil a unique approach to obtaining non-trivial topological magnons in two-dimensional materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信