利用分辨率增强网络加速化学位移编码心脏磁共振成像

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Manuel A Morales, Scott Johnson, Patrick Pierce, Reza Nezafat
{"title":"利用分辨率增强网络加速化学位移编码心脏磁共振成像","authors":"Manuel A Morales, Scott Johnson, Patrick Pierce, Reza Nezafat","doi":"10.1016/j.jocmr.2024.101090","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.</p><p><strong>Methods: </strong>FastCSE was built on a super-resolution generative adversarial network extended to enhance complex-valued image sharpness. FastCSE enhances each echo image independently before water-fat separation. FastCSE was trained with retrospectively identified cines from 1519 patients (56 ± 16 years; 866 men) referred for clinical 3T CMR. In a prospective study of 16 participants (58 ± 19 years; 7 females) and 5 healthy individuals (32 ± 17 years; 5 females), dual-echo CSE images were collected with 1.5 × 1.5 mm<sup>2</sup>, 2.5 × 1.5 mm<sup>2</sup>, and 3.8 × 1.9 mm<sup>2</sup> resolution using generalized autocalibrating partially parallel acquisition (GRAPPA). FastCSE was applied to images collected with resolution of 2.5 × 1.5 mm<sup>2</sup> and 3.8 × 1.9 mm<sup>2</sup> to restore sharpness. Fat images obtained from two-point Dixon reconstruction were evaluated using a quantitative blur metric and analyzed with a five-way analysis of variance.</p><p><strong>Results: </strong>FastCSE successfully reconstructed CSE images inline. FastCSE acquisition, with a resolution of 2.5 × 1.5 mm<sup>2</sup> and 3.8 × 1.9 mm<sup>2</sup>, reduced the number of breath-holds without impacting visualization of fat by approximately 1.5-fold and 3-fold compared to GRAPPA acquisition with a resolution of 1.5 × 1.5 mm<sup>2</sup>, from 3.0 ± 0.8 breath-holds to 2.0 ± 0.2 and 1.1 ± 0.4 breath-holds, respectively. FastCSE improved image sharpness and removed ringing artifacts in GRAPPA fat images acquired with a resolution of 2.5 × 1.5 mm<sup>2</sup> (0.32 ± 0.03 vs 0.35 ± 0.04, P < 0.001) and 3.8 × 1.9 mm<sup>2</sup> (0.32 ± 0.03 vs 0.43 ± 0.06, P < 0.001). Blurring in FastCSE images was similar to blurring in images with 1.5 × 1.5 mm<sup>2</sup> resolution (0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.57; 0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.66).</p><p><strong>Conclusion: </strong>We showed that a deep learning-accelerated CSE technique based on complex-valued resolution enhancement can reduce the number of breath-holds in CSE imaging without impacting the visualization of fat. FastCSE showed similar image sharpness compared to a standardized parallel imaging method.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101090"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated chemical shift encoded cardiovascular magnetic resonance imaging with use of a resolution enhancement network.\",\"authors\":\"Manuel A Morales, Scott Johnson, Patrick Pierce, Reza Nezafat\",\"doi\":\"10.1016/j.jocmr.2024.101090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.</p><p><strong>Methods: </strong>FastCSE was built on a super-resolution generative adversarial network extended to enhance complex-valued image sharpness. FastCSE enhances each echo image independently before water-fat separation. FastCSE was trained with retrospectively identified cines from 1519 patients (56 ± 16 years; 866 men) referred for clinical 3T CMR. In a prospective study of 16 participants (58 ± 19 years; 7 females) and 5 healthy individuals (32 ± 17 years; 5 females), dual-echo CSE images were collected with 1.5 × 1.5 mm<sup>2</sup>, 2.5 × 1.5 mm<sup>2</sup>, and 3.8 × 1.9 mm<sup>2</sup> resolution using generalized autocalibrating partially parallel acquisition (GRAPPA). FastCSE was applied to images collected with resolution of 2.5 × 1.5 mm<sup>2</sup> and 3.8 × 1.9 mm<sup>2</sup> to restore sharpness. Fat images obtained from two-point Dixon reconstruction were evaluated using a quantitative blur metric and analyzed with a five-way analysis of variance.</p><p><strong>Results: </strong>FastCSE successfully reconstructed CSE images inline. FastCSE acquisition, with a resolution of 2.5 × 1.5 mm<sup>2</sup> and 3.8 × 1.9 mm<sup>2</sup>, reduced the number of breath-holds without impacting visualization of fat by approximately 1.5-fold and 3-fold compared to GRAPPA acquisition with a resolution of 1.5 × 1.5 mm<sup>2</sup>, from 3.0 ± 0.8 breath-holds to 2.0 ± 0.2 and 1.1 ± 0.4 breath-holds, respectively. FastCSE improved image sharpness and removed ringing artifacts in GRAPPA fat images acquired with a resolution of 2.5 × 1.5 mm<sup>2</sup> (0.32 ± 0.03 vs 0.35 ± 0.04, P < 0.001) and 3.8 × 1.9 mm<sup>2</sup> (0.32 ± 0.03 vs 0.43 ± 0.06, P < 0.001). Blurring in FastCSE images was similar to blurring in images with 1.5 × 1.5 mm<sup>2</sup> resolution (0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.57; 0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.66).</p><p><strong>Conclusion: </strong>We showed that a deep learning-accelerated CSE technique based on complex-valued resolution enhancement can reduce the number of breath-holds in CSE imaging without impacting the visualization of fat. FastCSE showed similar image sharpness compared to a standardized parallel imaging method.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101090\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101090\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101090","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:心血管磁共振(CMR)化学位移编码(CSE)可实现心肌脂肪成像。我们试图开发一种深度学习网络(FastCSE)来加速 CSE:方法:FastCSE 建立在超分辨率生成对抗网络的基础上,并进行了扩展,以增强复值图像的清晰度。在水脂分离之前,FastCSE 会独立增强每个回波图像。FastCSE 是用 1519 名临床 3T CMR 转诊患者(56 ± 16 岁;866 名男性)的回顾性识别 cines 进行训练的。在一项针对 16 名参与者(58 ± 19 岁;7 名女性)和 5 名健康人(32 ± 17 岁;5 名女性)的前瞻性研究中,使用广义自动校准部分并行采集(GRAPPA)采集了分辨率分别为 1.5 × 1.5mm2、2.5 × 1.5 mm2 和 3.8 × 1.9 mm2 的双回波 CSE 图像。在采集分辨率为 2.5 × 1.5 mm2 和 3.8 × 1.9 mm2 的图像时,使用 FastCSE 恢复清晰度。使用定量模糊度量评估了两点 Dixon 重建获得的脂肪图像,并进行了 5 方差分析:结果:FastCSE 成功地在线重建了 CSE 图像。与分辨率为 1.5 × 1.5 mm² 的 GRAPPA 采集相比,分辨率为 2.5 × 1.5 mm² 和 3.8 × 1.9 mm² 的 FastCSE 采集减少了约 1.5 倍和 3 倍的屏气次数,而不影响脂肪的可视化,屏气次数分别从 3.0 ± 0.8 次减少到 2.0 ± 0.2 次和 1.1 ± 0.4 次。在分辨率为 2.5 × 1.5 mm2(0.31 ± 0.03 vs. 0.35 ± 0.04,P < 0.001)和 3.8 × 1.9 mm2(0.31 ± 0.03 vs. 0.42 ± 0.06,P < 0.001)的 GRAPPA 脂肪图像中,FastCSE 改善了图像清晰度并消除了振铃伪影。FastCSE图像中的模糊与1.5 × 1.5 mm²分辨率图像中的模糊相似(0.32 ±0.03 vs. 0.31 ± 0.03,P = 0.78;0.32 ± 0.03 vs. 0.31 ± 0.03,P = 0.90):我们的研究表明,基于复值分辨率增强的深度学习加速 CSE 技术可以减少 CSE 成像中的屏气次数,而不会影响脂肪的可视化。与标准化平行成像方法相比,FastCSE 显示出相似的图像清晰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated chemical shift encoded cardiovascular magnetic resonance imaging with use of a resolution enhancement network.

Background: Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.

Methods: FastCSE was built on a super-resolution generative adversarial network extended to enhance complex-valued image sharpness. FastCSE enhances each echo image independently before water-fat separation. FastCSE was trained with retrospectively identified cines from 1519 patients (56 ± 16 years; 866 men) referred for clinical 3T CMR. In a prospective study of 16 participants (58 ± 19 years; 7 females) and 5 healthy individuals (32 ± 17 years; 5 females), dual-echo CSE images were collected with 1.5 × 1.5 mm2, 2.5 × 1.5 mm2, and 3.8 × 1.9 mm2 resolution using generalized autocalibrating partially parallel acquisition (GRAPPA). FastCSE was applied to images collected with resolution of 2.5 × 1.5 mm2 and 3.8 × 1.9 mm2 to restore sharpness. Fat images obtained from two-point Dixon reconstruction were evaluated using a quantitative blur metric and analyzed with a five-way analysis of variance.

Results: FastCSE successfully reconstructed CSE images inline. FastCSE acquisition, with a resolution of 2.5 × 1.5 mm2 and 3.8 × 1.9 mm2, reduced the number of breath-holds without impacting visualization of fat by approximately 1.5-fold and 3-fold compared to GRAPPA acquisition with a resolution of 1.5 × 1.5 mm2, from 3.0 ± 0.8 breath-holds to 2.0 ± 0.2 and 1.1 ± 0.4 breath-holds, respectively. FastCSE improved image sharpness and removed ringing artifacts in GRAPPA fat images acquired with a resolution of 2.5 × 1.5 mm2 (0.32 ± 0.03 vs 0.35 ± 0.04, P < 0.001) and 3.8 × 1.9 mm2 (0.32 ± 0.03 vs 0.43 ± 0.06, P < 0.001). Blurring in FastCSE images was similar to blurring in images with 1.5 × 1.5 mm2 resolution (0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.57; 0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.66).

Conclusion: We showed that a deep learning-accelerated CSE technique based on complex-valued resolution enhancement can reduce the number of breath-holds in CSE imaging without impacting the visualization of fat. FastCSE showed similar image sharpness compared to a standardized parallel imaging method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信