干预微生物群:真菌感染植物宿主的伎俩

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
{"title":"干预微生物群:真菌感染植物宿主的伎俩","authors":"","doi":"10.1016/j.pbi.2024.102622","DOIUrl":null,"url":null,"abstract":"<div><p>Plants associate with a wealth of microbes, collectively referred to as the plant microbiota, whose composition is determined by host plant genetics, immune responses, environmental factors and intermicrobial relations. Unsurprisingly, microbiota compositions change during disease development. Recent evidence revealed that some of these changes can be attributed to effector proteins with antimicrobial activities that are secreted by plant pathogens to manipulate host microbiota to their advantage. Intriguingly, many of these effectors have ancient origins, predating land plant emergence, and evolved over long evolutionary trajectories to acquire selective antimicrobial activities to target microbial antagonists in host plant microbiota. Thus, we argue that host-pathogen co-evolution likely involved arms races within the host-associated microbiota.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001134/pdfft?md5=d769429fd405a964fef33fc90664573b&pid=1-s2.0-S1369526624001134-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Meddling with the microbiota: Fungal tricks to infect plant hosts\",\"authors\":\"\",\"doi\":\"10.1016/j.pbi.2024.102622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants associate with a wealth of microbes, collectively referred to as the plant microbiota, whose composition is determined by host plant genetics, immune responses, environmental factors and intermicrobial relations. Unsurprisingly, microbiota compositions change during disease development. Recent evidence revealed that some of these changes can be attributed to effector proteins with antimicrobial activities that are secreted by plant pathogens to manipulate host microbiota to their advantage. Intriguingly, many of these effectors have ancient origins, predating land plant emergence, and evolved over long evolutionary trajectories to acquire selective antimicrobial activities to target microbial antagonists in host plant microbiota. Thus, we argue that host-pathogen co-evolution likely involved arms races within the host-associated microbiota.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001134/pdfft?md5=d769429fd405a964fef33fc90664573b&pid=1-s2.0-S1369526624001134-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001134\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001134","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物与大量微生物(统称为植物微生物群)有联系,其组成由寄主植物遗传、免疫反应、环境因素和微生物间关系决定。毫不奇怪,微生物群的组成在疾病发展过程中会发生变化。最近的证据表明,其中一些变化可归因于植物病原体分泌的具有抗菌活性的效应蛋白,这些蛋白能操纵宿主微生物群,使其对自己有利。耐人寻味的是,这些效应蛋白中有许多起源古老,早于陆生植物的出现,并经过漫长的进化过程,获得了选择性抗菌活性,以宿主植物微生物群中的微生物拮抗剂为目标。因此,我们认为宿主与病原体的共同进化可能涉及宿主相关微生物群内部的军备竞赛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Meddling with the microbiota: Fungal tricks to infect plant hosts

Meddling with the microbiota: Fungal tricks to infect plant hosts

Plants associate with a wealth of microbes, collectively referred to as the plant microbiota, whose composition is determined by host plant genetics, immune responses, environmental factors and intermicrobial relations. Unsurprisingly, microbiota compositions change during disease development. Recent evidence revealed that some of these changes can be attributed to effector proteins with antimicrobial activities that are secreted by plant pathogens to manipulate host microbiota to their advantage. Intriguingly, many of these effectors have ancient origins, predating land plant emergence, and evolved over long evolutionary trajectories to acquire selective antimicrobial activities to target microbial antagonists in host plant microbiota. Thus, we argue that host-pathogen co-evolution likely involved arms races within the host-associated microbiota.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信