Jérémie Prévost , Angela Sloan , Yvon Deschambault , Nikesh Tailor , Kevin Tierney , Kimberly Azaransky , Srinivas Kammanadiminti , Douglas Barker , Shantha Kodihalli , David Safronetz
{"title":"西多福韦和布林昔多福韦对第二型猴痘病毒分离株的治疗效果。","authors":"Jérémie Prévost , Angela Sloan , Yvon Deschambault , Nikesh Tailor , Kevin Tierney , Kimberly Azaransky , Srinivas Kammanadiminti , Douglas Barker , Shantha Kodihalli , David Safronetz","doi":"10.1016/j.antiviral.2024.105995","DOIUrl":null,"url":null,"abstract":"<div><p>While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100 000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 105995"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224002043/pdfft?md5=1e70e7d1d8050f2c5ebd4495a876d581&pid=1-s2.0-S0166354224002043-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates\",\"authors\":\"Jérémie Prévost , Angela Sloan , Yvon Deschambault , Nikesh Tailor , Kevin Tierney , Kimberly Azaransky , Srinivas Kammanadiminti , Douglas Barker , Shantha Kodihalli , David Safronetz\",\"doi\":\"10.1016/j.antiviral.2024.105995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100 000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.</p></div>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\"231 \",\"pages\":\"Article 105995\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166354224002043/pdfft?md5=1e70e7d1d8050f2c5ebd4495a876d581&pid=1-s2.0-S0166354224002043-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166354224002043\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002043","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates
While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100 000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.