用于调节细菌附着行为的胍修饰多糖调节层。

IF 5.4 2区 医学 Q1 BIOPHYSICS
{"title":"用于调节细菌附着行为的胍修饰多糖调节层。","authors":"","doi":"10.1016/j.colsurfb.2024.114215","DOIUrl":null,"url":null,"abstract":"<div><p>Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both <em>P. aeruginosa</em> and <em>S. aureus</em> and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for <em>P. aeruginosa</em> and <em>S. aureus</em> respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors\",\"authors\":\"\",\"doi\":\"10.1016/j.colsurfb.2024.114215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both <em>P. aeruginosa</em> and <em>S. aureus</em> and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for <em>P. aeruginosa</em> and <em>S. aureus</em> respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.</p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524004740\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524004740","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

由于难以找到长期应用的高效环保型防污涂料,生物污损一直是一个全球性问题。细菌最初附着在材料表面,随后形成生物膜,这是随后发生生物污损的主要现象。在影响细菌附着的各种因素中,有机大分子形成的调理层通常通过改变基材表面的物理化学特性在介导细菌附着方面发挥关键作用。本研究构建并表征了一种具有调节细菌附着能力的胍修饰多糖调节层。细菌胞外聚合物(EPS)中广泛存在的多糖右旋糖酐被高碘酸钠氧化,阳离子聚合物聚六亚甲基胍盐酸盐(PHMG)通过席夫碱反应被锚定到氧化右旋糖酐(ODEX)上。原子力显微镜表征显示,PHMG 修饰后,多糖调节层的形态发生了变化,从缠结链变为岛状构象。胍基葡聚糖调节层促进了铜绿假单胞菌和金黄色葡萄球菌的附着,由于电阳性胍基与电负性细菌之间的静电作用,附着细菌的细胞膜被破坏。胍基葡聚糖调节层在细菌悬浮液中培养 72 小时后,铜绿假单胞菌和金黄色葡萄球菌的存活率分别为 22 %-34 % 和 1 %-4 %。这些结果将有助于进一步探索新设计的多糖调节层在抗生物污染方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guanidine-modified polysaccharide conditioning layer designed for regulating bacterial attachment behaviors

Biofouling has been persisting as a global problem due to the difficulties in finding efficient and environmentally friendly antifouling coatings for long-term applications. Initial attachment of bacteria on material surface and subsequent formation of biofilm are the predominate phenomena accounting for subsequent occurrence of biofouling. Among the various factors influencing the bacterial attachment, conditioning layer formed by organic macromolecules usually plays the key role in mediating bacterial attachment through altering physicochemical properties of substrate surface. In this study, a guanidine-modified polysaccharide conditioning layer with the capability of tuning the bacterial attachment is constructed and characterized. Dextran, a polysaccharide widespread in bacteria extracellular polymeric substances (EPS), is oxidized by sodium periodate, and cationic polymer polyhexamethylene guanidine hydrochloride (PHMG) is anchored to oxidized dextran (ODEX) by Schiff base reaction. AFM characterization reveals morphological changes of the polysaccharide conditioning layer from tangled chain to island conformation after the PHMG modification. The guanidine-based dextran conditioning layer promotes attachment of both P. aeruginosa and S. aureus and disrupted bacterial cytomembranes are seen for the attached bacteria due to electrostatic interaction of the electropositive guanidine group with the electronegative bacteria. The guanidine-based dextran conditioning layer shows a low survival ratio of 22 %-34 % and 1 %-4 % for P. aeruginosa and S. aureus respectively after incubation in the bacterial suspension for 72 hours. The results would give insight into further exploring the potential applications of the newly designed polysaccharides conditioning layer for combating occurrence of biofouling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信