机器学习和 DFT 双引导下的碳点植入 SrTiO3 中空纳米球实现高效全 PH 值光催化

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lijing Wang, Tianyi Yang, Mengjiao Wei, Renquan Guan, Wei Wei, Jizhou Jiang
{"title":"机器学习和 DFT 双引导下的碳点植入 SrTiO3 中空纳米球实现高效全 PH 值光催化","authors":"Lijing Wang, Tianyi Yang, Mengjiao Wei, Renquan Guan, Wei Wei, Jizhou Jiang","doi":"10.1016/j.jmst.2024.08.028","DOIUrl":null,"url":null,"abstract":"<p>The photo-Fenton-like reaction holds significant promise for treating low-concentration antibiotic wastewater, yet its progress is hindered by the weak adsorption and activation ability of peroxydisulfate (PDS) and limited pH application range. This work employs density functional theory and machine learning models in tandem to craft optimal photocatalysts for tetracycline (TC) degradation across all pH ranges. Our investigation reveals that carbon dots (CDs) modified SrTiO<sub>3</sub> hollow nanospheres exhibit robust PDS adsorption and activation capabilities, facilitating electron transfer from the photocatalyst to SO<sub>4</sub><sup>•-</sup>. Additionally, the abundant functional groups on CDs confer a protective effect on SrTiO<sub>3</sub>, shielding it from corrosion by strong acids and bases. Consequently, CDs-SrTiO<sub>3</sub> demonstrates excellent photocatalytic performance across the entire pH spectrum, particularly in alkaline and extremely acidic conditions. Furthermore, CDs deposition enhances the solar utilization, specific surface active site amount, and hydrophilicity of SrTiO<sub>3</sub>. Theoretical calculations and experimental characterizations elucidate the degradation mechanism and pathways of TC, while machine learning models optimize the experimental parameters. This work provides valuable insights into the rational design and adept preparation of high-quality photocatalysts suitable for a wide pH range towards wastewater treatment.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and DFT dual-guidance of carbon dots implanted SrTiO3 hollow nanosphere for efficient all-pH-value photocatalysis\",\"authors\":\"Lijing Wang, Tianyi Yang, Mengjiao Wei, Renquan Guan, Wei Wei, Jizhou Jiang\",\"doi\":\"10.1016/j.jmst.2024.08.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The photo-Fenton-like reaction holds significant promise for treating low-concentration antibiotic wastewater, yet its progress is hindered by the weak adsorption and activation ability of peroxydisulfate (PDS) and limited pH application range. This work employs density functional theory and machine learning models in tandem to craft optimal photocatalysts for tetracycline (TC) degradation across all pH ranges. Our investigation reveals that carbon dots (CDs) modified SrTiO<sub>3</sub> hollow nanospheres exhibit robust PDS adsorption and activation capabilities, facilitating electron transfer from the photocatalyst to SO<sub>4</sub><sup>•-</sup>. Additionally, the abundant functional groups on CDs confer a protective effect on SrTiO<sub>3</sub>, shielding it from corrosion by strong acids and bases. Consequently, CDs-SrTiO<sub>3</sub> demonstrates excellent photocatalytic performance across the entire pH spectrum, particularly in alkaline and extremely acidic conditions. Furthermore, CDs deposition enhances the solar utilization, specific surface active site amount, and hydrophilicity of SrTiO<sub>3</sub>. Theoretical calculations and experimental characterizations elucidate the degradation mechanism and pathways of TC, while machine learning models optimize the experimental parameters. This work provides valuable insights into the rational design and adept preparation of high-quality photocatalysts suitable for a wide pH range towards wastewater treatment.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.028\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

类似于芬顿的光反应在处理低浓度抗生素废水方面大有可为,但过硫酸盐(PDS)较弱的吸附和活化能力以及有限的 pH 值应用范围阻碍了该反应的进展。这项研究利用密度泛函理论和机器学习模型,在所有 pH 值范围内制作出降解四环素(TC)的最佳光催化剂。我们的研究发现,碳点(CD)修饰的 SrTiO3 中空纳米球具有强大的 PDS 吸附和活化能力,可促进电子从光催化剂转移到 SO4--。此外,CD 上丰富的官能团对 SrTiO3 具有保护作用,使其免受强酸和强碱的腐蚀。因此,CDs-SrTiO3 在整个 pH 值范围内,尤其是在碱性和极酸性条件下,都表现出卓越的光催化性能。此外,CD 沉积还提高了 SrTiO3 的太阳能利用率、特定表面活性位点数量和亲水性。理论计算和实验表征阐明了三氯乙酸的降解机制和途径,而机器学习模型则优化了实验参数。这项工作为合理设计和熟练制备适用于宽 pH 值范围废水处理的高质量光催化剂提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning and DFT dual-guidance of carbon dots implanted SrTiO3 hollow nanosphere for efficient all-pH-value photocatalysis

Machine learning and DFT dual-guidance of carbon dots implanted SrTiO3 hollow nanosphere for efficient all-pH-value photocatalysis

The photo-Fenton-like reaction holds significant promise for treating low-concentration antibiotic wastewater, yet its progress is hindered by the weak adsorption and activation ability of peroxydisulfate (PDS) and limited pH application range. This work employs density functional theory and machine learning models in tandem to craft optimal photocatalysts for tetracycline (TC) degradation across all pH ranges. Our investigation reveals that carbon dots (CDs) modified SrTiO3 hollow nanospheres exhibit robust PDS adsorption and activation capabilities, facilitating electron transfer from the photocatalyst to SO4•-. Additionally, the abundant functional groups on CDs confer a protective effect on SrTiO3, shielding it from corrosion by strong acids and bases. Consequently, CDs-SrTiO3 demonstrates excellent photocatalytic performance across the entire pH spectrum, particularly in alkaline and extremely acidic conditions. Furthermore, CDs deposition enhances the solar utilization, specific surface active site amount, and hydrophilicity of SrTiO3. Theoretical calculations and experimental characterizations elucidate the degradation mechanism and pathways of TC, while machine learning models optimize the experimental parameters. This work provides valuable insights into the rational design and adept preparation of high-quality photocatalysts suitable for a wide pH range towards wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信