数字量子计算机上的哈密顿动力学无离散化误差

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Etienne Granet, Henrik Dreyer
{"title":"数字量子计算机上的哈密顿动力学无离散化误差","authors":"Etienne Granet, Henrik Dreyer","doi":"10.1038/s41534-024-00877-y","DOIUrl":null,"url":null,"abstract":"<p>We introduce an algorithm to compute expectation values of time-evolved observables on digital quantum computers that requires only bounded average circuit depth to reach arbitrary precision, i.e. produces an unbiased estimator with finite average depth. This finite depth comes with an attenuation of the measured expectation value by a known amplitude, requiring more shots per circuit. The average gate count per circuit for simulation time <i>t</i> is <span>\\({\\mathcal{O}}({t}^{2}{\\mu }^{2})\\)</span> with <i>μ</i> the sum of the Hamiltonian coefficients, without dependence on precision, providing a significant improvement over previous algorithms. With shot noise, the average runtime is <span>\\({\\mathcal{O}}({t}^{2}{\\mu }^{2}{\\epsilon }^{-2})\\)</span> to reach precision <i>ϵ</i>. The only dependence in the sum of the coefficients makes it particularly adapted to non-sparse Hamiltonians. The algorithm generalizes to time-dependent Hamiltonians, appearing for example in adiabatic state preparation. These properties make it particularly suitable for present-day relatively noisy hardware that supports only circuits with moderate depth.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"15 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian dynamics on digital quantum computers without discretization error\",\"authors\":\"Etienne Granet, Henrik Dreyer\",\"doi\":\"10.1038/s41534-024-00877-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce an algorithm to compute expectation values of time-evolved observables on digital quantum computers that requires only bounded average circuit depth to reach arbitrary precision, i.e. produces an unbiased estimator with finite average depth. This finite depth comes with an attenuation of the measured expectation value by a known amplitude, requiring more shots per circuit. The average gate count per circuit for simulation time <i>t</i> is <span>\\\\({\\\\mathcal{O}}({t}^{2}{\\\\mu }^{2})\\\\)</span> with <i>μ</i> the sum of the Hamiltonian coefficients, without dependence on precision, providing a significant improvement over previous algorithms. With shot noise, the average runtime is <span>\\\\({\\\\mathcal{O}}({t}^{2}{\\\\mu }^{2}{\\\\epsilon }^{-2})\\\\)</span> to reach precision <i>ϵ</i>. The only dependence in the sum of the coefficients makes it particularly adapted to non-sparse Hamiltonians. The algorithm generalizes to time-dependent Hamiltonians, appearing for example in adiabatic state preparation. These properties make it particularly suitable for present-day relatively noisy hardware that supports only circuits with moderate depth.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00877-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00877-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种在数字量子计算机上计算时间演化观测值期望值的算法,这种算法只需要有界的平均电路深度就能达到任意精度,即产生具有有限平均深度的无偏估计值。这种有限深度会使测量到的期望值出现已知幅度的衰减,因此每个电路需要更多的测量次数。在模拟时间 t 内,每个电路的平均门数为({\mathcal{O}}({t}^{2}{\mu }^{2}),其中 μ 为哈密顿系数之和,与精度无关,与之前的算法相比有显著改进。在有射击噪声的情况下,达到ϵ精度的平均运行时间为({\mathcal{O}}({t}^{2}{\mu }^{2}{epsilon }^{-2})\)。系数之和的唯一依赖性使其特别适用于非稀疏哈密顿。该算法还适用于时间依赖的哈密顿,例如在绝热态制备中出现的哈密顿。这些特性使它特别适用于当今相对嘈杂、仅支持中等深度电路的硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hamiltonian dynamics on digital quantum computers without discretization error

Hamiltonian dynamics on digital quantum computers without discretization error

We introduce an algorithm to compute expectation values of time-evolved observables on digital quantum computers that requires only bounded average circuit depth to reach arbitrary precision, i.e. produces an unbiased estimator with finite average depth. This finite depth comes with an attenuation of the measured expectation value by a known amplitude, requiring more shots per circuit. The average gate count per circuit for simulation time t is \({\mathcal{O}}({t}^{2}{\mu }^{2})\) with μ the sum of the Hamiltonian coefficients, without dependence on precision, providing a significant improvement over previous algorithms. With shot noise, the average runtime is \({\mathcal{O}}({t}^{2}{\mu }^{2}{\epsilon }^{-2})\) to reach precision ϵ. The only dependence in the sum of the coefficients makes it particularly adapted to non-sparse Hamiltonians. The algorithm generalizes to time-dependent Hamiltonians, appearing for example in adiabatic state preparation. These properties make it particularly suitable for present-day relatively noisy hardware that supports only circuits with moderate depth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信