利用多层液体薄膜实现高效频谱展宽和少周期脉冲发生

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Jiacheng Huang, Xiang Lu, Feilong Hu, Yu Deng, Jie Long, Jiajun Tang, Lixin He, Qingbin Zhang, Pengfei Lan, Peixiang Lu
{"title":"利用多层液体薄膜实现高效频谱展宽和少周期脉冲发生","authors":"Jiacheng Huang, Xiang Lu, Feilong Hu, Yu Deng, Jie Long, Jiajun Tang, Lixin He, Qingbin Zhang, Pengfei Lan, Peixiang Lu","doi":"10.1002/lpor.202301191","DOIUrl":null,"url":null,"abstract":"High‐energy, few‐cycle laser pulses are essential for numerous applications in the fields of ultrafast optics and strong‐field physics, due to their ultrafast temporal resolution and high peak intensity. In this work, different from the traditional hollow‐core fibers and multiple thin solid plates, the generation of an octave‐spanning supercontinuum broadening is demonstrated by utilizing multiple ultrathin liquid films (MTLFs) as the nonlinear media. The continuum covers a range from 380 to 1050 nm, corresponding to a Fourier transform limit pulse width of 2.5 fs when 35 fs Ti: sapphire laser pulse is applied on the MTLFs. The output pulses are compressed to 3.9 fs by employing chirped mirrors. Furthermore, a continuous high‐order harmonic spectrum up to the 33rd order is realized by subjecting the compressed laser pulses to interact with Kr gas. The utilization of flowing liquid films eliminates permanent optical damage and enables wider and stronger spectrum broadening. Therefore, this MTLFs scheme provides new solutions for the generation of highly efficient supercontinuum and nonlinear pulse compression, with potential applications in the fields of strong‐field physics and attosecond science.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Spectral Broadening and Few‐Cycle Pulse Generation with Multiple Thin Liquid Films\",\"authors\":\"Jiacheng Huang, Xiang Lu, Feilong Hu, Yu Deng, Jie Long, Jiajun Tang, Lixin He, Qingbin Zhang, Pengfei Lan, Peixiang Lu\",\"doi\":\"10.1002/lpor.202301191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High‐energy, few‐cycle laser pulses are essential for numerous applications in the fields of ultrafast optics and strong‐field physics, due to their ultrafast temporal resolution and high peak intensity. In this work, different from the traditional hollow‐core fibers and multiple thin solid plates, the generation of an octave‐spanning supercontinuum broadening is demonstrated by utilizing multiple ultrathin liquid films (MTLFs) as the nonlinear media. The continuum covers a range from 380 to 1050 nm, corresponding to a Fourier transform limit pulse width of 2.5 fs when 35 fs Ti: sapphire laser pulse is applied on the MTLFs. The output pulses are compressed to 3.9 fs by employing chirped mirrors. Furthermore, a continuous high‐order harmonic spectrum up to the 33rd order is realized by subjecting the compressed laser pulses to interact with Kr gas. The utilization of flowing liquid films eliminates permanent optical damage and enables wider and stronger spectrum broadening. Therefore, this MTLFs scheme provides new solutions for the generation of highly efficient supercontinuum and nonlinear pulse compression, with potential applications in the fields of strong‐field physics and attosecond science.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202301191\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202301191","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

高能量、少周期激光脉冲具有超快的时间分辨率和高峰值强度,是超快光学和强场物理领域众多应用的关键。在这项研究中,与传统的空芯光纤和多薄固体板不同,利用多层超薄液体薄膜(MTLF)作为非线性介质,演示了跨倍频程超连续拓宽的产生。当 35 fs Ti:蓝宝石激光脉冲作用在 MTLF 上时,连续波的波长范围为 380 至 1050 nm,对应的傅立叶变换极限脉冲宽度为 2.5 fs。通过使用啁啾镜,输出脉冲被压缩到 3.9 fs。此外,通过压缩激光脉冲与 Kr 气体的相互作用,实现了高达 33 阶的连续高阶谐波频谱。流动液体薄膜的使用消除了永久性光学损伤,并实现了更宽更强的光谱展宽。因此,这种 MTLFs 方案为产生高效超连续和非线性脉冲压缩提供了新的解决方案,在强场物理和阿秒科学领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Spectral Broadening and Few‐Cycle Pulse Generation with Multiple Thin Liquid Films
High‐energy, few‐cycle laser pulses are essential for numerous applications in the fields of ultrafast optics and strong‐field physics, due to their ultrafast temporal resolution and high peak intensity. In this work, different from the traditional hollow‐core fibers and multiple thin solid plates, the generation of an octave‐spanning supercontinuum broadening is demonstrated by utilizing multiple ultrathin liquid films (MTLFs) as the nonlinear media. The continuum covers a range from 380 to 1050 nm, corresponding to a Fourier transform limit pulse width of 2.5 fs when 35 fs Ti: sapphire laser pulse is applied on the MTLFs. The output pulses are compressed to 3.9 fs by employing chirped mirrors. Furthermore, a continuous high‐order harmonic spectrum up to the 33rd order is realized by subjecting the compressed laser pulses to interact with Kr gas. The utilization of flowing liquid films eliminates permanent optical damage and enables wider and stronger spectrum broadening. Therefore, this MTLFs scheme provides new solutions for the generation of highly efficient supercontinuum and nonlinear pulse compression, with potential applications in the fields of strong‐field physics and attosecond science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信