氰酰胺框架中稳定的 Cu0 -Cu1+ 双位点,用于选择性 CO2 电还原成乙烯

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kaihang Yue, Yanyang Qin, Honghao Huang, Zhuoran Lv, Mingzhi Cai, Yaqiong Su, Fuqiang Huang, Ya Yan
{"title":"氰酰胺框架中稳定的 Cu0 -Cu1+ 双位点,用于选择性 CO2 电还原成乙烯","authors":"Kaihang Yue, Yanyang Qin, Honghao Huang, Zhuoran Lv, Mingzhi Cai, Yaqiong Su, Fuqiang Huang, Ya Yan","doi":"10.1038/s41467-024-52022-0","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical reduction of carbon dioxide to produce high-value ethylene is often limited by poor selectivity and yield of multi-carbon products. To address this, we propose a cyanamide-coordinated isolated copper framework with both metallic copper (Cu<sup>0</sup>) and charged copper (Cu<sup>1+</sup>) sites as an efficient electrocatalyst for the reduction of carbon dioxide to ethylene. Our <i>operando</i> electrochemical characterizations and theoretical calculations reveal that copper atoms in the Cu<sup>δ+</sup>NCN complex enhance carbon dioxide activation by improving surface carbon monoxide adsorption, while delocalized electrons around copper sites facilitate carbon-carbon coupling by reducing the Gibbs free energy for *CHC formation. This leads to high selectivity for ethylene production. The Cu<sup>δ+</sup>NCN catalyst achieves 77.7% selectivity for carbon dioxide to ethylene conversion at a partial current density of 400 milliamperes per square centimeter and demonstrates long-term stability over 80 hours in membrane electrode assembly-based electrolysers. This study provides a strategic approach for designing catalysts for the electrosynthesis of value-added chemicals from carbon dioxide.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"102 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene\",\"authors\":\"Kaihang Yue, Yanyang Qin, Honghao Huang, Zhuoran Lv, Mingzhi Cai, Yaqiong Su, Fuqiang Huang, Ya Yan\",\"doi\":\"10.1038/s41467-024-52022-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical reduction of carbon dioxide to produce high-value ethylene is often limited by poor selectivity and yield of multi-carbon products. To address this, we propose a cyanamide-coordinated isolated copper framework with both metallic copper (Cu<sup>0</sup>) and charged copper (Cu<sup>1+</sup>) sites as an efficient electrocatalyst for the reduction of carbon dioxide to ethylene. Our <i>operando</i> electrochemical characterizations and theoretical calculations reveal that copper atoms in the Cu<sup>δ+</sup>NCN complex enhance carbon dioxide activation by improving surface carbon monoxide adsorption, while delocalized electrons around copper sites facilitate carbon-carbon coupling by reducing the Gibbs free energy for *CHC formation. This leads to high selectivity for ethylene production. The Cu<sup>δ+</sup>NCN catalyst achieves 77.7% selectivity for carbon dioxide to ethylene conversion at a partial current density of 400 milliamperes per square centimeter and demonstrates long-term stability over 80 hours in membrane electrode assembly-based electrolysers. This study provides a strategic approach for designing catalysts for the electrosynthesis of value-added chemicals from carbon dioxide.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52022-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52022-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电化学还原二氧化碳以生产高价值乙烯的过程往往受到选择性差和多碳产物产量低的限制。针对这一问题,我们提出了一种氰酰胺配位的孤立铜框架,该框架同时具有金属铜(Cu0)和带电铜(Cu1+)位点,可作为将二氧化碳还原为乙烯的高效电催化剂。我们的操作电化学表征和理论计算显示,Cuδ+NCN 复合物中的铜原子通过改善表面对一氧化碳的吸附增强了二氧化碳的活化,而铜位点周围的非局域电子通过降低 *CHC 形成的吉布斯自由能促进了碳碳耦合。这导致乙烯生产的高选择性。在部分电流密度为每平方厘米 400 毫安时,Cuδ+NCN 催化剂将二氧化碳转化为乙烯的选择性达到 77.7%,并在基于膜电极组件的电解槽中长期稳定运行 80 小时。这项研究为设计二氧化碳电合成高附加值化学品的催化剂提供了一种战略方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene

Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene

Electrochemical reduction of carbon dioxide to produce high-value ethylene is often limited by poor selectivity and yield of multi-carbon products. To address this, we propose a cyanamide-coordinated isolated copper framework with both metallic copper (Cu0) and charged copper (Cu1+) sites as an efficient electrocatalyst for the reduction of carbon dioxide to ethylene. Our operando electrochemical characterizations and theoretical calculations reveal that copper atoms in the Cuδ+NCN complex enhance carbon dioxide activation by improving surface carbon monoxide adsorption, while delocalized electrons around copper sites facilitate carbon-carbon coupling by reducing the Gibbs free energy for *CHC formation. This leads to high selectivity for ethylene production. The Cuδ+NCN catalyst achieves 77.7% selectivity for carbon dioxide to ethylene conversion at a partial current density of 400 milliamperes per square centimeter and demonstrates long-term stability over 80 hours in membrane electrode assembly-based electrolysers. This study provides a strategic approach for designing catalysts for the electrosynthesis of value-added chemicals from carbon dioxide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信