Dennis Hein;Staffan Holmin;Timothy Szczykutowicz;Jonathan S. Maltz;Mats Danielsson;Ge Wang;Mats Persson
{"title":"PPFM:使用单步后向采样泊松流生成模型对光子计数 CT 中的图像去噪","authors":"Dennis Hein;Staffan Holmin;Timothy Szczykutowicz;Jonathan S. Maltz;Mats Danielsson;Ge Wang;Mats Persson","doi":"10.1109/TRPMS.2024.3410092","DOIUrl":null,"url":null,"abstract":"Diffusion and Poisson flow models have shown impressive performance in a wide range of generative tasks, including low-dose CT (LDCT) image denoising. However, one limitation in general, and for clinical applications in particular, is slow sampling. Due to their iterative nature, the number of function evaluations (NFEs) required is usually on the order of \n<inline-formula> <tex-math>$10-10^{3}$ </tex-math></inline-formula>\n, both for conditional and unconditional generation. In this article, we present posterior sampling Poisson flow generative models (PPFMs), a novel image denoising technique for low-dose and photon-counting CT that produces excellent image quality whilst keeping NFE = 1. Updating the training and sampling processes of Poisson flow generative models (PFGMs)++, we learn a conditional generator which defines a trajectory between the prior noise distribution and the posterior distribution of interest. We additionally hijack and regularize the sampling process to achieve NFE = 1. Our results shed light on the benefits of the PFGM++ framework compared to diffusion models. In addition, PPFM is shown to perform favorably compared to current state-of-the-art diffusion-style models with NFE = 1, consistency models, as well as popular deep learning and nondeep learning-based image denoising techniques, on clinical LDCT images and clinical images from a prototype photon-counting CT system.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554640","citationCount":"0","resultStr":"{\"title\":\"PPFM: Image Denoising in Photon-Counting CT Using Single-Step Posterior Sampling Poisson Flow Generative Models\",\"authors\":\"Dennis Hein;Staffan Holmin;Timothy Szczykutowicz;Jonathan S. Maltz;Mats Danielsson;Ge Wang;Mats Persson\",\"doi\":\"10.1109/TRPMS.2024.3410092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion and Poisson flow models have shown impressive performance in a wide range of generative tasks, including low-dose CT (LDCT) image denoising. However, one limitation in general, and for clinical applications in particular, is slow sampling. Due to their iterative nature, the number of function evaluations (NFEs) required is usually on the order of \\n<inline-formula> <tex-math>$10-10^{3}$ </tex-math></inline-formula>\\n, both for conditional and unconditional generation. In this article, we present posterior sampling Poisson flow generative models (PPFMs), a novel image denoising technique for low-dose and photon-counting CT that produces excellent image quality whilst keeping NFE = 1. Updating the training and sampling processes of Poisson flow generative models (PFGMs)++, we learn a conditional generator which defines a trajectory between the prior noise distribution and the posterior distribution of interest. We additionally hijack and regularize the sampling process to achieve NFE = 1. Our results shed light on the benefits of the PFGM++ framework compared to diffusion models. In addition, PPFM is shown to perform favorably compared to current state-of-the-art diffusion-style models with NFE = 1, consistency models, as well as popular deep learning and nondeep learning-based image denoising techniques, on clinical LDCT images and clinical images from a prototype photon-counting CT system.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554640\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10554640/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554640/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
PPFM: Image Denoising in Photon-Counting CT Using Single-Step Posterior Sampling Poisson Flow Generative Models
Diffusion and Poisson flow models have shown impressive performance in a wide range of generative tasks, including low-dose CT (LDCT) image denoising. However, one limitation in general, and for clinical applications in particular, is slow sampling. Due to their iterative nature, the number of function evaluations (NFEs) required is usually on the order of
$10-10^{3}$
, both for conditional and unconditional generation. In this article, we present posterior sampling Poisson flow generative models (PPFMs), a novel image denoising technique for low-dose and photon-counting CT that produces excellent image quality whilst keeping NFE = 1. Updating the training and sampling processes of Poisson flow generative models (PFGMs)++, we learn a conditional generator which defines a trajectory between the prior noise distribution and the posterior distribution of interest. We additionally hijack and regularize the sampling process to achieve NFE = 1. Our results shed light on the benefits of the PFGM++ framework compared to diffusion models. In addition, PPFM is shown to perform favorably compared to current state-of-the-art diffusion-style models with NFE = 1, consistency models, as well as popular deep learning and nondeep learning-based image denoising techniques, on clinical LDCT images and clinical images from a prototype photon-counting CT system.