David L. West;Ashley A. Goodnight;Nima Ghalichechian
{"title":"超宽带、光热激发毫米波二氧化钒开关","authors":"David L. West;Ashley A. Goodnight;Nima Ghalichechian","doi":"10.1109/LMWT.2024.3422848","DOIUrl":null,"url":null,"abstract":"We report the first demonstration of photothermally excited vanadium dioxide (VO\n<inline-formula> <tex-math>$_{\\mathbf {2}}$ </tex-math></inline-formula>\n) RF switches. The switches operate from dc to 65 GHz. VO\n<inline-formula> <tex-math>$_{\\mathbf {2}}$ </tex-math></inline-formula>\n is a phase-change material with a volatile insulator-metal transition (IMT) at \n<inline-formula> <tex-math>$68~^{\\circ }$ </tex-math></inline-formula>\nC, and it is a promising technology for millimeter-wave (mmWave) switching applications that require low-loss performance. However, the traditional activation of VO\n<inline-formula> <tex-math>$_{\\mathbf {2}}$ </tex-math></inline-formula>\n switches using microheaters results in undesirable parasitic capacitance. We propose heating VO\n<inline-formula> <tex-math>$_{\\mathbf {2}}$ </tex-math></inline-formula>\n with a laser, which decouples the excitation method from electromagnetic (EM) design. The coplanar waveguide (CPW) switches exhibit low-loss, ultrawideband performance, with <0.43-dB>17.7-dB return loss in the on state and >17.2-dB isolation in the off state from 10 MHz to 65 GHz. The figure of merit defined as 1/(\n<inline-formula> <tex-math>$2\\pi $ </tex-math></inline-formula>\nR\n<inline-formula> <tex-math>$_{\\text{on}}$ </tex-math></inline-formula>\nC\n<inline-formula> <tex-math>$_{\\text{off}}$ </tex-math></inline-formula>\n) is extracted as 12.4 THz. We achieve switching times in the microsecond range using a continuous-wave 786-nm semiconductor laser.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 9","pages":"1083-1086"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrawideband, Photothermally Excited mmWave Vanadium Dioxide Switches\",\"authors\":\"David L. West;Ashley A. Goodnight;Nima Ghalichechian\",\"doi\":\"10.1109/LMWT.2024.3422848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the first demonstration of photothermally excited vanadium dioxide (VO\\n<inline-formula> <tex-math>$_{\\\\mathbf {2}}$ </tex-math></inline-formula>\\n) RF switches. The switches operate from dc to 65 GHz. VO\\n<inline-formula> <tex-math>$_{\\\\mathbf {2}}$ </tex-math></inline-formula>\\n is a phase-change material with a volatile insulator-metal transition (IMT) at \\n<inline-formula> <tex-math>$68~^{\\\\circ }$ </tex-math></inline-formula>\\nC, and it is a promising technology for millimeter-wave (mmWave) switching applications that require low-loss performance. However, the traditional activation of VO\\n<inline-formula> <tex-math>$_{\\\\mathbf {2}}$ </tex-math></inline-formula>\\n switches using microheaters results in undesirable parasitic capacitance. We propose heating VO\\n<inline-formula> <tex-math>$_{\\\\mathbf {2}}$ </tex-math></inline-formula>\\n with a laser, which decouples the excitation method from electromagnetic (EM) design. The coplanar waveguide (CPW) switches exhibit low-loss, ultrawideband performance, with <0.43-dB>17.7-dB return loss in the on state and >17.2-dB isolation in the off state from 10 MHz to 65 GHz. The figure of merit defined as 1/(\\n<inline-formula> <tex-math>$2\\\\pi $ </tex-math></inline-formula>\\nR\\n<inline-formula> <tex-math>$_{\\\\text{on}}$ </tex-math></inline-formula>\\nC\\n<inline-formula> <tex-math>$_{\\\\text{off}}$ </tex-math></inline-formula>\\n) is extracted as 12.4 THz. We achieve switching times in the microsecond range using a continuous-wave 786-nm semiconductor laser.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"34 9\",\"pages\":\"1083-1086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10592005/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10592005/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
我们首次展示了光热激发二氧化钒(VO $_{\mathbf {2}}$ )射频开关。开关的工作频率从直流到 65 GHz。VO $_{\mathbf {2}}$ 是一种相变材料,在 68~^{\circ }$ C 时具有易挥发的绝缘体-金属转变 (IMT),对于需要低损耗性能的毫米波 (mmWave) 开关应用来说,它是一种很有前途的技术。然而,使用微加热器激活 VO $_{mathbf {2}}$ 开关的传统方法会产生不理想的寄生电容。我们建议使用激光加热 VO $_{mathbf {2}}$,这样就能将激励方法与电磁(EM)设计分离开来。共面波导 (CPW) 开关具有低损耗、超宽带性能,在导通状态下的回波损耗为 17.7 分贝,在关断状态下的隔离度大于 17.2 分贝,频率范围从 10 MHz 到 65 GHz。根据 1/( $2\pi $ R $_{\text{on}}$ C $_{\text{off}}$)的定义,提取的优越性为 12.4 THz。我们使用波长为 786 纳米的连续半导体激光器实现了微秒级的开关时间。
We report the first demonstration of photothermally excited vanadium dioxide (VO
$_{\mathbf {2}}$
) RF switches. The switches operate from dc to 65 GHz. VO
$_{\mathbf {2}}$
is a phase-change material with a volatile insulator-metal transition (IMT) at
$68~^{\circ }$
C, and it is a promising technology for millimeter-wave (mmWave) switching applications that require low-loss performance. However, the traditional activation of VO
$_{\mathbf {2}}$
switches using microheaters results in undesirable parasitic capacitance. We propose heating VO
$_{\mathbf {2}}$
with a laser, which decouples the excitation method from electromagnetic (EM) design. The coplanar waveguide (CPW) switches exhibit low-loss, ultrawideband performance, with <0.43-dB>17.7-dB return loss in the on state and >17.2-dB isolation in the off state from 10 MHz to 65 GHz. The figure of merit defined as 1/(
$2\pi $
R
$_{\text{on}}$
C
$_{\text{off}}$
) is extracted as 12.4 THz. We achieve switching times in the microsecond range using a continuous-wave 786-nm semiconductor laser.