人类颞上回的离散亚区组织了音节处理。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
Daniel R Cleary, Youngbin Tchoe, Andrew Bourhis, Charles W Dickey, Brittany Stedelin, Mehran Ganji, Sang Heon Lee, Jihweean Lee, Dominic A Siler, Erik C Brown, Burke Q Rosen, Erik Kaestner, Jimmy C Yang, Daniel J Soper, Seunggu Jude Han, Angelique C Paulk, Sydney S Cash, Ahmed M Raslan, Shadi A Dayeh, Eric Halgren
{"title":"人类颞上回的离散亚区组织了音节处理。","authors":"Daniel R Cleary, Youngbin Tchoe, Andrew Bourhis, Charles W Dickey, Brittany Stedelin, Mehran Ganji, Sang Heon Lee, Jihweean Lee, Dominic A Siler, Erik C Brown, Burke Q Rosen, Erik Kaestner, Jimmy C Yang, Daniel J Soper, Seunggu Jude Han, Angelique C Paulk, Sydney S Cash, Ahmed M Raslan, Shadi A Dayeh, Eric Halgren","doi":"10.1371/journal.pbio.3002774","DOIUrl":null,"url":null,"abstract":"<p><p>Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 μm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 μm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syllable processing is organized in discrete subregions of the human superior temporal gyrus.\",\"authors\":\"Daniel R Cleary, Youngbin Tchoe, Andrew Bourhis, Charles W Dickey, Brittany Stedelin, Mehran Ganji, Sang Heon Lee, Jihweean Lee, Dominic A Siler, Erik C Brown, Burke Q Rosen, Erik Kaestner, Jimmy C Yang, Daniel J Soper, Seunggu Jude Han, Angelique C Paulk, Sydney S Cash, Ahmed M Raslan, Shadi A Dayeh, Eric Halgren\",\"doi\":\"10.1371/journal.pbio.3002774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 μm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 μm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002774\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002774","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

约 1 毫米尺度的模块化组织可能是皮层处理的基础,但其在人类联想皮层中的存在尚不清楚。我们使用定制的高密度电极阵列放置在 7 名接受清醒开颅肿瘤切除术的患者的皮层表面,研究了人类左侧(优势)后颞上回的感受性言语处理。用间距为 200 μm 的 1,024 通道微网格记录的对辅音-元音音节和噪声编码对照的反应显示了直径约为 1.7 mm 的大致圆形区域,而在间距为 50 μm 的 128 通道线性阵列中则观察到了尖锐的边界,这可能与柱状组织一致。不同模块中音节的峰值潜伏期呈双峰分布,分别以 252 和 386 毫秒为中心。相邻模块之间的时间进程和刺激选择性截然不同。我们认为,接受语言皮层可能由离散的处理模块组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syllable processing is organized in discrete subregions of the human superior temporal gyrus.

Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 μm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 μm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信