氮化硼纳米管孔隙中的离子传输和超高效渗透发电。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhongwu Li, Alex T. Hall, Yaqing Wang, Yuhao Li, Dana O. Byrne, Lyndsey R. Scammell, R. Roy Whitney, Frances I. Allen, John Cumings, Aleksandr Noy
{"title":"氮化硼纳米管孔隙中的离子传输和超高效渗透发电。","authors":"Zhongwu Li,&nbsp;Alex T. Hall,&nbsp;Yaqing Wang,&nbsp;Yuhao Li,&nbsp;Dana O. Byrne,&nbsp;Lyndsey R. Scammell,&nbsp;R. Roy Whitney,&nbsp;Frances I. Allen,&nbsp;John Cumings,&nbsp;Aleksandr Noy","doi":"10.1126/sciadv.ado8081","DOIUrl":null,"url":null,"abstract":"<div >Nanotube porins form transmembrane nanomaterial-derived scaffolds that mimic the geometry and functionality of biological membrane channels. We report synthesis, transport properties, and osmotic energy harvesting performance of another member of the nanotube porin family: boron nitride nanotube porins (BNNTPs). Cryo–transmission electron microscopy imaging, liposome transport assays, and DNA translocation experiments show that BNNTPs reconstitute into lipid membranes to form functional channels of ~2-nm diameter. Ion transport studies reveal ion conductance characteristics of individual BNNTPs, which show an unusual <i>C</i><sup>1/4</sup> scaling with ion concentration and pronounced pH sensitivity. Reversal potential measurements indicate that BNNTPs have strong cation selectivity at neutral pH, attributable to the high negative charge on the channel. BNNTPs also deliver very large power density up to 12 kW/m<sup>2</sup> in the osmotic gradient transport experiments at neutral pH, surpassing that of other BNNT-based devices by two orders of magnitude under similar conditions. Our results suggest that BNNTPs are a promising platform for mass transport and osmotic power generation.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado8081","citationCount":"0","resultStr":"{\"title\":\"Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins\",\"authors\":\"Zhongwu Li,&nbsp;Alex T. Hall,&nbsp;Yaqing Wang,&nbsp;Yuhao Li,&nbsp;Dana O. Byrne,&nbsp;Lyndsey R. Scammell,&nbsp;R. Roy Whitney,&nbsp;Frances I. Allen,&nbsp;John Cumings,&nbsp;Aleksandr Noy\",\"doi\":\"10.1126/sciadv.ado8081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Nanotube porins form transmembrane nanomaterial-derived scaffolds that mimic the geometry and functionality of biological membrane channels. We report synthesis, transport properties, and osmotic energy harvesting performance of another member of the nanotube porin family: boron nitride nanotube porins (BNNTPs). Cryo–transmission electron microscopy imaging, liposome transport assays, and DNA translocation experiments show that BNNTPs reconstitute into lipid membranes to form functional channels of ~2-nm diameter. Ion transport studies reveal ion conductance characteristics of individual BNNTPs, which show an unusual <i>C</i><sup>1/4</sup> scaling with ion concentration and pronounced pH sensitivity. Reversal potential measurements indicate that BNNTPs have strong cation selectivity at neutral pH, attributable to the high negative charge on the channel. BNNTPs also deliver very large power density up to 12 kW/m<sup>2</sup> in the osmotic gradient transport experiments at neutral pH, surpassing that of other BNNT-based devices by two orders of magnitude under similar conditions. Our results suggest that BNNTPs are a promising platform for mass transport and osmotic power generation.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ado8081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ado8081\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado8081","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纳米管孔蛋白形成了跨膜纳米材料支架,可模仿生物膜通道的几何形状和功能。我们报告了纳米管孔蛋白家族另一成员:氮化硼纳米管孔蛋白(BNNTPs)的合成、传输特性和渗透能量收集性能。低温透射电子显微镜成像、脂质体运输测定和 DNA 转位实验表明,BNNTPs 能重组到脂质膜中,形成直径约为 2 纳米的功能通道。离子传输研究揭示了单个 BNNTPs 的离子传导特性,这些特性显示出不同寻常的 C1/4 离子浓度比例和明显的 pH 敏感性。反转电位测量结果表明,BNNTPs 在中性 pH 值下具有很强的阳离子选择性,这归因于通道上的高负电荷。在中性 pH 值的渗透梯度传输实验中,BNNTP 还能提供高达 12 kW/m2 的超大功率密度,比其他基于 BNNT 的器件在类似条件下的功率密度高出两个数量级。我们的研究结果表明,BNNTPs 是一种很有前途的质量传输和渗透发电平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins

Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins
Nanotube porins form transmembrane nanomaterial-derived scaffolds that mimic the geometry and functionality of biological membrane channels. We report synthesis, transport properties, and osmotic energy harvesting performance of another member of the nanotube porin family: boron nitride nanotube porins (BNNTPs). Cryo–transmission electron microscopy imaging, liposome transport assays, and DNA translocation experiments show that BNNTPs reconstitute into lipid membranes to form functional channels of ~2-nm diameter. Ion transport studies reveal ion conductance characteristics of individual BNNTPs, which show an unusual C1/4 scaling with ion concentration and pronounced pH sensitivity. Reversal potential measurements indicate that BNNTPs have strong cation selectivity at neutral pH, attributable to the high negative charge on the channel. BNNTPs also deliver very large power density up to 12 kW/m2 in the osmotic gradient transport experiments at neutral pH, surpassing that of other BNNT-based devices by two orders of magnitude under similar conditions. Our results suggest that BNNTPs are a promising platform for mass transport and osmotic power generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信