Liat Adler, Chun Sing Lau, Kashif M Shaikh, Kim A van Maldegem, Alex L Payne-Dwyer, Cecile Lefoulon, Philipp Girr, Nicky Atkinson, James Barrett, Tom Z Emrich-Mills, Emilija Dukic, Michael R Blatt, Mark C Leake, Gilles Peltier, Cornelia Spetea, Adrien Burlacot, Alistair J McCormick, Luke C M Mackinder, Charlotte E Walker
{"title":"类 Bestrophin 蛋白 4 参与了衣藻光合作用对光照波动的适应。","authors":"Liat Adler, Chun Sing Lau, Kashif M Shaikh, Kim A van Maldegem, Alex L Payne-Dwyer, Cecile Lefoulon, Philipp Girr, Nicky Atkinson, James Barrett, Tom Z Emrich-Mills, Emilija Dukic, Michael R Blatt, Mark C Leake, Gilles Peltier, Cornelia Spetea, Adrien Burlacot, Alistair J McCormick, Luke C M Mackinder, Charlotte E Walker","doi":"10.1093/plphys/kiae450","DOIUrl":null,"url":null,"abstract":"<p><p>In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid membranes called pyrenoid tubules, which are proposed to deliver CO2. In the model alga Chlamydomonas (Chlamydomonas reinhardtii), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules, and heterologous expression of BST4 in Arabidopsis (Arabidopsis thaliana) did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutants did not show impaired growth under continuous light at air level CO2 but were impaired in their growth under fluctuating light. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we propose that bst4 has a transiently lower thylakoid lumenal pH during dark-to-light transition compared to control strains. We conclude that BST4 is not a tethering protein but is most likely a pyrenoid tubule ion channel involved in the ion homeostasis of the lumen with particular importance during light fluctuations.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":"2374-2394"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bestrophin-like protein 4 is involved in photosynthetic acclimation to light fluctuations in Chlamydomonas.\",\"authors\":\"Liat Adler, Chun Sing Lau, Kashif M Shaikh, Kim A van Maldegem, Alex L Payne-Dwyer, Cecile Lefoulon, Philipp Girr, Nicky Atkinson, James Barrett, Tom Z Emrich-Mills, Emilija Dukic, Michael R Blatt, Mark C Leake, Gilles Peltier, Cornelia Spetea, Adrien Burlacot, Alistair J McCormick, Luke C M Mackinder, Charlotte E Walker\",\"doi\":\"10.1093/plphys/kiae450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid membranes called pyrenoid tubules, which are proposed to deliver CO2. In the model alga Chlamydomonas (Chlamydomonas reinhardtii), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules, and heterologous expression of BST4 in Arabidopsis (Arabidopsis thaliana) did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutants did not show impaired growth under continuous light at air level CO2 but were impaired in their growth under fluctuating light. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we propose that bst4 has a transiently lower thylakoid lumenal pH during dark-to-light transition compared to control strains. We conclude that BST4 is not a tethering protein but is most likely a pyrenoid tubule ion channel involved in the ion homeostasis of the lumen with particular importance during light fluctuations.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"2374-2394\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae450\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae450","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Bestrophin-like protein 4 is involved in photosynthetic acclimation to light fluctuations in Chlamydomonas.
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid membranes called pyrenoid tubules, which are proposed to deliver CO2. In the model alga Chlamydomonas (Chlamydomonas reinhardtii), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules, and heterologous expression of BST4 in Arabidopsis (Arabidopsis thaliana) did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutants did not show impaired growth under continuous light at air level CO2 but were impaired in their growth under fluctuating light. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we propose that bst4 has a transiently lower thylakoid lumenal pH during dark-to-light transition compared to control strains. We conclude that BST4 is not a tethering protein but is most likely a pyrenoid tubule ion channel involved in the ion homeostasis of the lumen with particular importance during light fluctuations.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.