偶氮藻类石莲花虫(Cnidaria: Anthozoa)基因组揭示了毒素相关基因簇和六孔动物神经元基因的缺失。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Yuki Yoshioka, Hiroshi Yamashita, Taiga Uchida, Chuya Shinzato, Mayumi Kawamitsu, Chloé Julie Loïs Fourreau, Guillermo Mironenko Castelló, Britta Katharina Fiedler, Timotheus Maximilian van den Eeckhout, Stefano Borghi, James Davis Reimer, Eiichi Shoguchi
{"title":"偶氮藻类石莲花虫(Cnidaria: Anthozoa)基因组揭示了毒素相关基因簇和六孔动物神经元基因的缺失。","authors":"Yuki Yoshioka, Hiroshi Yamashita, Taiga Uchida, Chuya Shinzato, Mayumi Kawamitsu, Chloé Julie Loïs Fourreau, Guillermo Mironenko Castelló, Britta Katharina Fiedler, Timotheus Maximilian van den Eeckhout, Stefano Borghi, James Davis Reimer, Eiichi Shoguchi","doi":"10.1093/gbe/evae197","DOIUrl":null,"url":null,"abstract":"<p><p>Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413580/pdf/","citationCount":"0","resultStr":"{\"title\":\"Azooxanthellate Palythoa (Cnidaria: Anthozoa) Genomes Reveal Toxin-related Gene Clusters and Loss of Neuronal Genes in Hexacorals.\",\"authors\":\"Yuki Yoshioka, Hiroshi Yamashita, Taiga Uchida, Chuya Shinzato, Mayumi Kawamitsu, Chloé Julie Loïs Fourreau, Guillermo Mironenko Castelló, Britta Katharina Fiedler, Timotheus Maximilian van den Eeckhout, Stefano Borghi, James Davis Reimer, Eiichi Shoguchi\",\"doi\":\"10.1093/gbe/evae197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413580/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae197\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae197","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Zoantharia 是六孔纲(Anthozoa: Cnidaria)中的一个目,包括至少 300 个物种。此前报道的硬骨珊瑚和动子海葵的基因组揭示了六孔动物的部分多样性。然而,人们对六角珊瑚的基因组和早期演化知之甚少。为了探索这一类六孔海葵的基因组进化,我们在这里报告了藻类海葵 Palythoa mizigama(Pmiz)和 Palythoa umbrosa(Pumb)的全新基因组组装结果,这两种海葵都是 Sphenopidae 科的成员,它们独特地生活在相对黑暗的珊瑚礁洞穴中,没有共生的共生藻科甲藻。Pmiz 和 Pumb 的超低输入 PacBio 测序生成的基因组草案分别为 373 Mbp 和 319 Mbp。每个基因组中都预测了蛋白质编码基因,Pmiz 的预测基因总数为 30,394 个,Pumb 的预测基因总数为 24,800 个,每个基因组的 BUSCO 完整性都达到了 93%。比较基因组分析发现了3,036个保守基因家族,这些基因家族在所有分析的六瓣珊瑚基因组中都有发现。与毒素、几丁质降解和前列腺素生物合成有关的一些基因在这两个海扇藻基因组中得到了扩充,其中许多基因串联排列。在石粉藻系中没有发现广泛的基因家族缺失,而在10个可能缺失的基因家族中,有5个可能具有神经元功能,这表明石粉藻的基因缺失是有偏向性的。总之,我们的比较分析表明,从六孔动物的共同祖先开始,石莲花一系的基因家族在进化过程中保持不变。基因家族的限制性丢失可能意味着,在这两个石莲花属物种中,丢失的神经元功能对环境适应是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Azooxanthellate Palythoa (Cnidaria: Anthozoa) Genomes Reveal Toxin-related Gene Clusters and Loss of Neuronal Genes in Hexacorals.

Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信