Florian Hubrich , Sanath K. Kandy , Clara Chepkirui , Chandrashekhar Padhi , Silja Mordhorst , Philipp Moosmann , Tao Zhu , Muriel Gugger , Jonathan R. Chekan , Jörn Piel
{"title":"具有多环异戊二烯分子的核糖体肽","authors":"Florian Hubrich , Sanath K. Kandy , Clara Chepkirui , Chandrashekhar Padhi , Silja Mordhorst , Philipp Moosmann , Tao Zhu , Muriel Gugger , Jonathan R. Chekan , Jörn Piel","doi":"10.1016/j.chempr.2024.07.026","DOIUrl":null,"url":null,"abstract":"<div><div>Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C<sub>15</sub> (farnesyl) and C<sub>20</sub> (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class. Here, we used targeted genome mining and heterologous pathway reconstitution to identify ribosomally synthesized and post-translationally modified peptides (RiPPs) with elaborate, cyclized geranylgeranyl modifications. The installing maturases commonly feature fused prenyltransferase-terpene cyclase architectures. We characterized two bifunctional maturases with distinct prenyltransferase folds and identified the terminal product of a cyanobacterial proteusin as an exceptionally complex pseudosteroid-annelated polycyclic peptide. Bioassays suggest modest anti-cyanobacterial activity with the modification being crucial for activity. Genome data predict cyclic isoprenoid units for various RiPP families, including proteusin, Nif11, and lasso peptides, and thus the broader natural and biotechnological compatibility of the maturase system.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3224-3242"},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribosomal peptides with polycyclic isoprenoid moieties\",\"authors\":\"Florian Hubrich , Sanath K. Kandy , Clara Chepkirui , Chandrashekhar Padhi , Silja Mordhorst , Philipp Moosmann , Tao Zhu , Muriel Gugger , Jonathan R. Chekan , Jörn Piel\",\"doi\":\"10.1016/j.chempr.2024.07.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C<sub>15</sub> (farnesyl) and C<sub>20</sub> (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class. Here, we used targeted genome mining and heterologous pathway reconstitution to identify ribosomally synthesized and post-translationally modified peptides (RiPPs) with elaborate, cyclized geranylgeranyl modifications. The installing maturases commonly feature fused prenyltransferase-terpene cyclase architectures. We characterized two bifunctional maturases with distinct prenyltransferase folds and identified the terminal product of a cyanobacterial proteusin as an exceptionally complex pseudosteroid-annelated polycyclic peptide. Bioassays suggest modest anti-cyanobacterial activity with the modification being crucial for activity. Genome data predict cyclic isoprenoid units for various RiPP families, including proteusin, Nif11, and lasso peptides, and thus the broader natural and biotechnological compatibility of the maturase system.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 10\",\"pages\":\"Pages 3224-3242\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424003693\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003693","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ribosomal peptides with polycyclic isoprenoid moieties
Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C15 (farnesyl) and C20 (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class. Here, we used targeted genome mining and heterologous pathway reconstitution to identify ribosomally synthesized and post-translationally modified peptides (RiPPs) with elaborate, cyclized geranylgeranyl modifications. The installing maturases commonly feature fused prenyltransferase-terpene cyclase architectures. We characterized two bifunctional maturases with distinct prenyltransferase folds and identified the terminal product of a cyanobacterial proteusin as an exceptionally complex pseudosteroid-annelated polycyclic peptide. Bioassays suggest modest anti-cyanobacterial activity with the modification being crucial for activity. Genome data predict cyclic isoprenoid units for various RiPP families, including proteusin, Nif11, and lasso peptides, and thus the broader natural and biotechnological compatibility of the maturase system.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.