{"title":"蜜蜂授粉者的热生物多样性:分类学、系统发育和植物群落层面的相关性","authors":"Carlos M. Herrera","doi":"10.1002/ecm.1625","DOIUrl":null,"url":null,"abstract":"<p>Community-wide assembly of plant–pollinator systems depends on an intricate combination of biotic and abiotic factors, including heterogeneity among pollinators in thermal biology and responses to abiotic factors. Studies on the thermal biology of pollinators have mostly considered only one or a few species of plants or pollinators at a time, and the possible driving role of the diversity in thermal biology of pollinator asemblages at the plant community level remains largely unexplored. More specifically, it is unknown whether diversity in the thermal biology of bees, a major pollinator group worldwide, contributes to the assembly and maintenance of diverse bee communities; broadens the spectrum of possibilities available to bee-pollinated plants; facilitates interspecific partitioning of ecological gradients across habitats, seasons, and time of day; and/or enhance plant pollination success through complementarity effects. The objectives of this study were to assess the diversity in thermal biology of the bee assemblage that pollinates plants in a Mediterranean montane area, evaluate its taxonomic and phylogenetic underpinnings, and elucidate whether there existed seasonal, daily, between-habitat, or floral visitation correlates of bee thermal biology which could contribute to partition ecological gradients among plant and bee species. Thermal biology parameters were obtained in the laboratory (<i>K</i>, intrinsic warming constant) and the field (thoracic and ambient temperature at foraging site, <i>T</i><sub>th</sub> and <i>T</i><sub>air</sub>) on individual bees of a diverse sample (<i>N</i> = 204 bee species) comprising most bee pollinators of the regional plant community. Species-specific thermal biology parameters were combined with quantitative field data on bee pollinators and flower visitation for the regional community of entomophilous plants (<i>N</i> = 292 plant species). Results revealed that the regional bee assemblage harbored considerable diversity in thermal biology features; that such diversity was mostly taxonomically, phylogenetically, and body-size structured; and that the broad interspecific heterogeneity in thermal biology represented in the bee community as a whole eventually translated into daily, seasonal, among-habitat, and flower visitation patterns at the plant community level. This lends support to the hypothesis that broad diversity in thermal biology of bees can enhance opportunities for bee coexistence, spatiotemporal partitioning of floral resources, and plant pollination success.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1625","citationCount":"0","resultStr":"{\"title\":\"Thermal biology diversity of bee pollinators: Taxonomic, phylogenetic, and plant community-level correlates\",\"authors\":\"Carlos M. Herrera\",\"doi\":\"10.1002/ecm.1625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Community-wide assembly of plant–pollinator systems depends on an intricate combination of biotic and abiotic factors, including heterogeneity among pollinators in thermal biology and responses to abiotic factors. Studies on the thermal biology of pollinators have mostly considered only one or a few species of plants or pollinators at a time, and the possible driving role of the diversity in thermal biology of pollinator asemblages at the plant community level remains largely unexplored. More specifically, it is unknown whether diversity in the thermal biology of bees, a major pollinator group worldwide, contributes to the assembly and maintenance of diverse bee communities; broadens the spectrum of possibilities available to bee-pollinated plants; facilitates interspecific partitioning of ecological gradients across habitats, seasons, and time of day; and/or enhance plant pollination success through complementarity effects. The objectives of this study were to assess the diversity in thermal biology of the bee assemblage that pollinates plants in a Mediterranean montane area, evaluate its taxonomic and phylogenetic underpinnings, and elucidate whether there existed seasonal, daily, between-habitat, or floral visitation correlates of bee thermal biology which could contribute to partition ecological gradients among plant and bee species. Thermal biology parameters were obtained in the laboratory (<i>K</i>, intrinsic warming constant) and the field (thoracic and ambient temperature at foraging site, <i>T</i><sub>th</sub> and <i>T</i><sub>air</sub>) on individual bees of a diverse sample (<i>N</i> = 204 bee species) comprising most bee pollinators of the regional plant community. Species-specific thermal biology parameters were combined with quantitative field data on bee pollinators and flower visitation for the regional community of entomophilous plants (<i>N</i> = 292 plant species). Results revealed that the regional bee assemblage harbored considerable diversity in thermal biology features; that such diversity was mostly taxonomically, phylogenetically, and body-size structured; and that the broad interspecific heterogeneity in thermal biology represented in the bee community as a whole eventually translated into daily, seasonal, among-habitat, and flower visitation patterns at the plant community level. This lends support to the hypothesis that broad diversity in thermal biology of bees can enhance opportunities for bee coexistence, spatiotemporal partitioning of floral resources, and plant pollination success.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"94 4\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1625\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1625\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1625","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Thermal biology diversity of bee pollinators: Taxonomic, phylogenetic, and plant community-level correlates
Community-wide assembly of plant–pollinator systems depends on an intricate combination of biotic and abiotic factors, including heterogeneity among pollinators in thermal biology and responses to abiotic factors. Studies on the thermal biology of pollinators have mostly considered only one or a few species of plants or pollinators at a time, and the possible driving role of the diversity in thermal biology of pollinator asemblages at the plant community level remains largely unexplored. More specifically, it is unknown whether diversity in the thermal biology of bees, a major pollinator group worldwide, contributes to the assembly and maintenance of diverse bee communities; broadens the spectrum of possibilities available to bee-pollinated plants; facilitates interspecific partitioning of ecological gradients across habitats, seasons, and time of day; and/or enhance plant pollination success through complementarity effects. The objectives of this study were to assess the diversity in thermal biology of the bee assemblage that pollinates plants in a Mediterranean montane area, evaluate its taxonomic and phylogenetic underpinnings, and elucidate whether there existed seasonal, daily, between-habitat, or floral visitation correlates of bee thermal biology which could contribute to partition ecological gradients among plant and bee species. Thermal biology parameters were obtained in the laboratory (K, intrinsic warming constant) and the field (thoracic and ambient temperature at foraging site, Tth and Tair) on individual bees of a diverse sample (N = 204 bee species) comprising most bee pollinators of the regional plant community. Species-specific thermal biology parameters were combined with quantitative field data on bee pollinators and flower visitation for the regional community of entomophilous plants (N = 292 plant species). Results revealed that the regional bee assemblage harbored considerable diversity in thermal biology features; that such diversity was mostly taxonomically, phylogenetically, and body-size structured; and that the broad interspecific heterogeneity in thermal biology represented in the bee community as a whole eventually translated into daily, seasonal, among-habitat, and flower visitation patterns at the plant community level. This lends support to the hypothesis that broad diversity in thermal biology of bees can enhance opportunities for bee coexistence, spatiotemporal partitioning of floral resources, and plant pollination success.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.