{"title":"高代四环素改变了土壤中微生物群落的组成并诱发了抗生素耐药菌的出现","authors":"Ying Li , Xiaoying Liu , Jie Wang , Si Li","doi":"10.1016/j.jhazmat.2024.135757","DOIUrl":null,"url":null,"abstract":"<div><p>Tetracyclines (TCs) have been widely detected in agricultural soil due to their widespread use in animal husbandry. The impact of low-generation TCs, i.e., the first- and second- generations, on soil ecosystem has attracted widespread attention. However, the dynamic response of soil microbial community to high-generation TCs, i.e., the third- and fourth- generations, remains largely unknown. Herein, we characterized the variations in the composition, diversity and succession of microbial community and the proliferation of antibiotic resistance genes (ARGs) under the stress of four generations of TCs in brown soil and red soil. The results demonstrated that the exposure of low- and high- generation TCs consistently decreased the alpha diversity and stimulated the succession rate of microbial community in soil. High-generation TCs strongly shifted microbial community composition by reducing community resilience. The complexity of microbial networks and cross-module associations were strengthened to cope with the stress of high-generation TCs in soil. The abundance of ARGs was exacerbated by 1.75 times in response to the fourth-generation TCs compared to control in brown soil. The potential bacterial hosts of ARGs were more diverse in brown soil exposed to high-generation TCs, but the dominant hosts were not changed. These results highlight the potential ecological risk of the newly developed antibiotics, which is helpful for a comprehensive risk assessment of emerging contaminants.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"480 ","pages":"Article 135757"},"PeriodicalIF":11.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-generation tetracyclines shifted microbial community composition and induced the emergence of antibiotic resistant bacteria in soil\",\"authors\":\"Ying Li , Xiaoying Liu , Jie Wang , Si Li\",\"doi\":\"10.1016/j.jhazmat.2024.135757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tetracyclines (TCs) have been widely detected in agricultural soil due to their widespread use in animal husbandry. The impact of low-generation TCs, i.e., the first- and second- generations, on soil ecosystem has attracted widespread attention. However, the dynamic response of soil microbial community to high-generation TCs, i.e., the third- and fourth- generations, remains largely unknown. Herein, we characterized the variations in the composition, diversity and succession of microbial community and the proliferation of antibiotic resistance genes (ARGs) under the stress of four generations of TCs in brown soil and red soil. The results demonstrated that the exposure of low- and high- generation TCs consistently decreased the alpha diversity and stimulated the succession rate of microbial community in soil. High-generation TCs strongly shifted microbial community composition by reducing community resilience. The complexity of microbial networks and cross-module associations were strengthened to cope with the stress of high-generation TCs in soil. The abundance of ARGs was exacerbated by 1.75 times in response to the fourth-generation TCs compared to control in brown soil. The potential bacterial hosts of ARGs were more diverse in brown soil exposed to high-generation TCs, but the dominant hosts were not changed. These results highlight the potential ecological risk of the newly developed antibiotics, which is helpful for a comprehensive risk assessment of emerging contaminants.</p></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"480 \",\"pages\":\"Article 135757\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424023367\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424023367","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
High-generation tetracyclines shifted microbial community composition and induced the emergence of antibiotic resistant bacteria in soil
Tetracyclines (TCs) have been widely detected in agricultural soil due to their widespread use in animal husbandry. The impact of low-generation TCs, i.e., the first- and second- generations, on soil ecosystem has attracted widespread attention. However, the dynamic response of soil microbial community to high-generation TCs, i.e., the third- and fourth- generations, remains largely unknown. Herein, we characterized the variations in the composition, diversity and succession of microbial community and the proliferation of antibiotic resistance genes (ARGs) under the stress of four generations of TCs in brown soil and red soil. The results demonstrated that the exposure of low- and high- generation TCs consistently decreased the alpha diversity and stimulated the succession rate of microbial community in soil. High-generation TCs strongly shifted microbial community composition by reducing community resilience. The complexity of microbial networks and cross-module associations were strengthened to cope with the stress of high-generation TCs in soil. The abundance of ARGs was exacerbated by 1.75 times in response to the fourth-generation TCs compared to control in brown soil. The potential bacterial hosts of ARGs were more diverse in brown soil exposed to high-generation TCs, but the dominant hosts were not changed. These results highlight the potential ecological risk of the newly developed antibiotics, which is helpful for a comprehensive risk assessment of emerging contaminants.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.