基于双供体界面电荷转移复合物的大规模可调色有机发光二极管的实现及其机理

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Zhongtao Shen, Zhaoyue Lü, Zhehao Chen, Junling Wang, Haichuan Mu
{"title":"基于双供体界面电荷转移复合物的大规模可调色有机发光二极管的实现及其机理","authors":"Zhongtao Shen, Zhaoyue Lü, Zhehao Chen, Junling Wang, Haichuan Mu","doi":"10.1063/5.0226298","DOIUrl":null,"url":null,"abstract":"Color tunable organic light-emitting diodes have intrigued many application fields, such as smart lighting and information encryption. In this study, we propose a simple structure based on interfacial charge transfer complexes (CTCs) with double donors and single acceptors for achieving color tunability. Through embedding a second donor between the primary donor and the acceptor, the emission of devices can be well-tuned by simply controlling the applied voltage. The calculated frontier molecular orbitals of constituted monomers and heterodimers via density function theory confirm the formation of CTCs between the donors and acceptor. Importantly, the highest occupied molecular orbital level and charge carrier mobility of the second donor are crucial to realize widely adjustable spectra with the voltage. With this strategy, the device incorporating 1,3-di(9H-carbazol-9-yl)benzene as the second donor and 4,4′,4″-tris[(3-methylphenyl)phenylamino] triphenylamine as the primary donor exhibits the largest color shift. The CIE coordinates span from (0.52, 0.46) at 4 V to (0.29, 0.26) at 10 V. These findings shed light on the fact that the double-donor-strategy is feasible for fulfilling large-scale color tunability of CTC-based organic light-emitting diodes and is beneficial to simplify the fabrication process.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achievement and mechanism of large-scale color tunable OLEDs based on interfacial charge transfer complexes with dual donors\",\"authors\":\"Zhongtao Shen, Zhaoyue Lü, Zhehao Chen, Junling Wang, Haichuan Mu\",\"doi\":\"10.1063/5.0226298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color tunable organic light-emitting diodes have intrigued many application fields, such as smart lighting and information encryption. In this study, we propose a simple structure based on interfacial charge transfer complexes (CTCs) with double donors and single acceptors for achieving color tunability. Through embedding a second donor between the primary donor and the acceptor, the emission of devices can be well-tuned by simply controlling the applied voltage. The calculated frontier molecular orbitals of constituted monomers and heterodimers via density function theory confirm the formation of CTCs between the donors and acceptor. Importantly, the highest occupied molecular orbital level and charge carrier mobility of the second donor are crucial to realize widely adjustable spectra with the voltage. With this strategy, the device incorporating 1,3-di(9H-carbazol-9-yl)benzene as the second donor and 4,4′,4″-tris[(3-methylphenyl)phenylamino] triphenylamine as the primary donor exhibits the largest color shift. The CIE coordinates span from (0.52, 0.46) at 4 V to (0.29, 0.26) at 10 V. These findings shed light on the fact that the double-donor-strategy is feasible for fulfilling large-scale color tunability of CTC-based organic light-emitting diodes and is beneficial to simplify the fabrication process.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226298\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226298","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

可调色有机发光二极管已在智能照明和信息加密等多个应用领域引起了人们的兴趣。在这项研究中,我们提出了一种基于双供体和单受体的界面电荷转移复合物(CTC)的简单结构,以实现颜色可调。通过在主供体和受体之间嵌入第二个供体,只需控制外加电压就能很好地调节器件的发射。通过密度函数理论计算出的构成单体和异二聚体的前沿分子轨道证实,在供体和受体之间形成了四氯化碳。重要的是,第二供体的最高占位分子轨道水平和电荷载流子迁移率对于实现随电压广泛可调的光谱至关重要。采用这种策略,以 1,3-二(9H-咔唑-9-基)苯为第二供体、4,4′,4″-三[(3-甲基苯基)苯胺]三苯胺为第一供体的器件显示出最大的色移。这些发现表明,双供体策略对于实现基于四氯化碳的有机发光二极管的大规模颜色可调性是可行的,并且有利于简化制造工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achievement and mechanism of large-scale color tunable OLEDs based on interfacial charge transfer complexes with dual donors
Color tunable organic light-emitting diodes have intrigued many application fields, such as smart lighting and information encryption. In this study, we propose a simple structure based on interfacial charge transfer complexes (CTCs) with double donors and single acceptors for achieving color tunability. Through embedding a second donor between the primary donor and the acceptor, the emission of devices can be well-tuned by simply controlling the applied voltage. The calculated frontier molecular orbitals of constituted monomers and heterodimers via density function theory confirm the formation of CTCs between the donors and acceptor. Importantly, the highest occupied molecular orbital level and charge carrier mobility of the second donor are crucial to realize widely adjustable spectra with the voltage. With this strategy, the device incorporating 1,3-di(9H-carbazol-9-yl)benzene as the second donor and 4,4′,4″-tris[(3-methylphenyl)phenylamino] triphenylamine as the primary donor exhibits the largest color shift. The CIE coordinates span from (0.52, 0.46) at 4 V to (0.29, 0.26) at 10 V. These findings shed light on the fact that the double-donor-strategy is feasible for fulfilling large-scale color tunability of CTC-based organic light-emitting diodes and is beneficial to simplify the fabrication process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信