Clémentine Richter, Lorenz Latta, Daria Harig, Patrick Carius, Janick D. Stucki, Nina Hobi, Andreas Hugi, Paul Schumacher, Tobias Krebs, Alexander Gamrekeli, Felix Stöckle, Klaus Urbschat, Galia Montalvo, Franziska Lautenschläger, Brigitta Loretz, Alberto Hidalgo, Nicole Schneider‐Daum, Claus‐Michael Lehr
{"title":"用于评估抗炎药物反应的肺泡炎症可拉伸人肺芯片模型","authors":"Clémentine Richter, Lorenz Latta, Daria Harig, Patrick Carius, Janick D. Stucki, Nina Hobi, Andreas Hugi, Paul Schumacher, Tobias Krebs, Alexander Gamrekeli, Felix Stöckle, Klaus Urbschat, Galia Montalvo, Franziska Lautenschläger, Brigitta Loretz, Alberto Hidalgo, Nicole Schneider‐Daum, Claus‐Michael Lehr","doi":"10.1002/btm2.10715","DOIUrl":null,"url":null,"abstract":"This study describes a complex human in vitro model for evaluating anti‐inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre‐clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co‐cultured with macrophages differentiated from the THP‐1 cell line, creating a physiological biological microenvironment. To mimic the three‐dimensional architecture and dynamic expansion and relaxation of the air‐blood‐barrier, they are grown on a stretchable microphysiological lung‐on‐chip. For validating the in vitro model, three different protocols have been developed to demonstrate the clinically established anti‐inflammatory effect of glucocorticoids to reduce certain inflammatory markers after different pro‐inflammatory stimuli: (1) an inflammation caused by bacterial LPS (lipopolysaccharides) to simulate an LPS‐induced acute lung injury measured best with cytokine IL‐6 release; (2) an inflammation caused by LPS at ALI (air‐liquid interface) to investigate aerosolized anti‐inflammatory treatment, measured with chemokine IL‐8 release; and (3) an inflammation with a combination of human inflammatory cytokines TNFα and IFNγ to simulate a critical cytokine storm leading to epithelial barrier disruption, where the eventual weakening or protection of the epithelial barrier can be measured. In all cases, the presence of macrophages appeared to be crucial to mediating inflammatory changes in the alveolar epithelium. LPS induction led to inflammatory changes independently of stretch conditions. Dynamic stretch, emulating breathing‐like mechanics, was essential for in vitro modeling of the clinically relevant outcome of epithelial barrier disruption upon TNFα/IFNγ‐induced inflammation.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stretchable human lung‐on‐chip model of alveolar inflammation for evaluating anti‐inflammatory drug response\",\"authors\":\"Clémentine Richter, Lorenz Latta, Daria Harig, Patrick Carius, Janick D. Stucki, Nina Hobi, Andreas Hugi, Paul Schumacher, Tobias Krebs, Alexander Gamrekeli, Felix Stöckle, Klaus Urbschat, Galia Montalvo, Franziska Lautenschläger, Brigitta Loretz, Alberto Hidalgo, Nicole Schneider‐Daum, Claus‐Michael Lehr\",\"doi\":\"10.1002/btm2.10715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study describes a complex human in vitro model for evaluating anti‐inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre‐clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co‐cultured with macrophages differentiated from the THP‐1 cell line, creating a physiological biological microenvironment. To mimic the three‐dimensional architecture and dynamic expansion and relaxation of the air‐blood‐barrier, they are grown on a stretchable microphysiological lung‐on‐chip. For validating the in vitro model, three different protocols have been developed to demonstrate the clinically established anti‐inflammatory effect of glucocorticoids to reduce certain inflammatory markers after different pro‐inflammatory stimuli: (1) an inflammation caused by bacterial LPS (lipopolysaccharides) to simulate an LPS‐induced acute lung injury measured best with cytokine IL‐6 release; (2) an inflammation caused by LPS at ALI (air‐liquid interface) to investigate aerosolized anti‐inflammatory treatment, measured with chemokine IL‐8 release; and (3) an inflammation with a combination of human inflammatory cytokines TNFα and IFNγ to simulate a critical cytokine storm leading to epithelial barrier disruption, where the eventual weakening or protection of the epithelial barrier can be measured. In all cases, the presence of macrophages appeared to be crucial to mediating inflammatory changes in the alveolar epithelium. LPS induction led to inflammatory changes independently of stretch conditions. Dynamic stretch, emulating breathing‐like mechanics, was essential for in vitro modeling of the clinically relevant outcome of epithelial barrier disruption upon TNFα/IFNγ‐induced inflammation.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.10715\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10715","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A stretchable human lung‐on‐chip model of alveolar inflammation for evaluating anti‐inflammatory drug response
This study describes a complex human in vitro model for evaluating anti‐inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre‐clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co‐cultured with macrophages differentiated from the THP‐1 cell line, creating a physiological biological microenvironment. To mimic the three‐dimensional architecture and dynamic expansion and relaxation of the air‐blood‐barrier, they are grown on a stretchable microphysiological lung‐on‐chip. For validating the in vitro model, three different protocols have been developed to demonstrate the clinically established anti‐inflammatory effect of glucocorticoids to reduce certain inflammatory markers after different pro‐inflammatory stimuli: (1) an inflammation caused by bacterial LPS (lipopolysaccharides) to simulate an LPS‐induced acute lung injury measured best with cytokine IL‐6 release; (2) an inflammation caused by LPS at ALI (air‐liquid interface) to investigate aerosolized anti‐inflammatory treatment, measured with chemokine IL‐8 release; and (3) an inflammation with a combination of human inflammatory cytokines TNFα and IFNγ to simulate a critical cytokine storm leading to epithelial barrier disruption, where the eventual weakening or protection of the epithelial barrier can be measured. In all cases, the presence of macrophages appeared to be crucial to mediating inflammatory changes in the alveolar epithelium. LPS induction led to inflammatory changes independently of stretch conditions. Dynamic stretch, emulating breathing‐like mechanics, was essential for in vitro modeling of the clinically relevant outcome of epithelial barrier disruption upon TNFα/IFNγ‐induced inflammation.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.