Yunpeng Cao, Jiayi Hong, Yun Zhao, Xiaoxu Li, Xiaofeng Feng, Han Wang, Lin Zhang, Mengfei Lin, Yongping Cai, Yuepeng Han
{"title":"通过与桃中保守基因的相互作用将新基因整合到调控网络中","authors":"Yunpeng Cao, Jiayi Hong, Yun Zhao, Xiaoxu Li, Xiaofeng Feng, Han Wang, Lin Zhang, Mengfei Lin, Yongping Cai, Yuepeng Han","doi":"10.1093/hr/uhae252","DOIUrl":null,"url":null,"abstract":"De novo genes can evolve 'from scratch' from non-coding sequences, acquiring novel functions in organisms and integrating into regulatory networks during evolution to drive innovations in important phenotypes and traits. However, identifying de novo genes is challenging, as it requires high-quality genomes from closely related species. According to the comparison with nine closely related Prunus genomes, we determined at least 178 de novo genes in P. persica ‘baifeng’. The distinct differences were observed between de novo and conserved genes in gene characteristics and expression patterns. Gene ontology (GO) enrichment analysis suggested that Type I de novo genes originated from sequences related to plastid modification functions, while Type II genes were inferred to have derived from sequences related to reproductive functions. Finally, transcriptome sequencing across different tissues and developmental stages suggested that de novo genes have been evolutionarily recruited into existing regulatory networks, playing important roles in plant growth and development, which was also supported by WGCNA analysis and quantitative trait loci data. This study lays the groundwork for future research on the origins and functions of genes in Prunus and related taxa.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De novo gene integration into regulation networks via interaction with conserved genes in peach\",\"authors\":\"Yunpeng Cao, Jiayi Hong, Yun Zhao, Xiaoxu Li, Xiaofeng Feng, Han Wang, Lin Zhang, Mengfei Lin, Yongping Cai, Yuepeng Han\",\"doi\":\"10.1093/hr/uhae252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"De novo genes can evolve 'from scratch' from non-coding sequences, acquiring novel functions in organisms and integrating into regulatory networks during evolution to drive innovations in important phenotypes and traits. However, identifying de novo genes is challenging, as it requires high-quality genomes from closely related species. According to the comparison with nine closely related Prunus genomes, we determined at least 178 de novo genes in P. persica ‘baifeng’. The distinct differences were observed between de novo and conserved genes in gene characteristics and expression patterns. Gene ontology (GO) enrichment analysis suggested that Type I de novo genes originated from sequences related to plastid modification functions, while Type II genes were inferred to have derived from sequences related to reproductive functions. Finally, transcriptome sequencing across different tissues and developmental stages suggested that de novo genes have been evolutionarily recruited into existing regulatory networks, playing important roles in plant growth and development, which was also supported by WGCNA analysis and quantitative trait loci data. This study lays the groundwork for future research on the origins and functions of genes in Prunus and related taxa.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae252\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae252","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
De novo gene integration into regulation networks via interaction with conserved genes in peach
De novo genes can evolve 'from scratch' from non-coding sequences, acquiring novel functions in organisms and integrating into regulatory networks during evolution to drive innovations in important phenotypes and traits. However, identifying de novo genes is challenging, as it requires high-quality genomes from closely related species. According to the comparison with nine closely related Prunus genomes, we determined at least 178 de novo genes in P. persica ‘baifeng’. The distinct differences were observed between de novo and conserved genes in gene characteristics and expression patterns. Gene ontology (GO) enrichment analysis suggested that Type I de novo genes originated from sequences related to plastid modification functions, while Type II genes were inferred to have derived from sequences related to reproductive functions. Finally, transcriptome sequencing across different tissues and developmental stages suggested that de novo genes have been evolutionarily recruited into existing regulatory networks, playing important roles in plant growth and development, which was also supported by WGCNA analysis and quantitative trait loci data. This study lays the groundwork for future research on the origins and functions of genes in Prunus and related taxa.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.