Yu Ti Cheng, Caitlin A. Thireault, Li Zhang, Bradley C. Paasch, Reza Sohrabi, Sheng Yang He
{"title":"拟南芥叶片中微生物群在自身免疫中的作用","authors":"Yu Ti Cheng, Caitlin A. Thireault, Li Zhang, Bradley C. Paasch, Reza Sohrabi, Sheng Yang He","doi":"10.1038/s41477-024-01779-9","DOIUrl":null,"url":null,"abstract":"Over the past three decades, researchers have isolated plant mutants that show constitutively activated defence responses in the absence of pathogen infection. These mutants are called autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. Here, from a genetic screen for Arabidopsis genes involved in maintaining a normal leaf microbiota, we identified TIP GROWTH DEFECTIVE 1 (TIP1), which encodes an S-acyltransferase, as a key player in guarding leaves against abnormal microbiota level and composition under high-humidity conditions. The tip1 mutant has several characteristic phenotypes of classical autoimmune mutants, including a dwarf stature, showing lesions, and having a high basal level of defence gene expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the tip1 mutant are largely dependent on the presence of microbiota as axenic tip1 plants have markedly reduced autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is shared by several ‘lesion mimic’-type autoimmune mutants in Arabidopsis. It is worth noting that autoimmune phenotypes caused by mutations in two Nucleotide-Binding, Leucine-Rich Repeat (NLR) genes do not require the presence of microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the existence of at least two classes of autoimmunity (microbiota-dependent versus microbiota-independent) in plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal kingdom. These parallels highlight the intricate relationship between host immunity and microbial communities across various biological systems. The authors show that dysbiotic microbiota can cause severe autoimmunity conditions in Arabidopsis plants, a concept that is reminiscent of autoimmunity–dysbiosis interactions found in mammals.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1363-1376"},"PeriodicalIF":15.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01779-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Roles of microbiota in autoimmunity in Arabidopsis leaves\",\"authors\":\"Yu Ti Cheng, Caitlin A. Thireault, Li Zhang, Bradley C. Paasch, Reza Sohrabi, Sheng Yang He\",\"doi\":\"10.1038/s41477-024-01779-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past three decades, researchers have isolated plant mutants that show constitutively activated defence responses in the absence of pathogen infection. These mutants are called autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. Here, from a genetic screen for Arabidopsis genes involved in maintaining a normal leaf microbiota, we identified TIP GROWTH DEFECTIVE 1 (TIP1), which encodes an S-acyltransferase, as a key player in guarding leaves against abnormal microbiota level and composition under high-humidity conditions. The tip1 mutant has several characteristic phenotypes of classical autoimmune mutants, including a dwarf stature, showing lesions, and having a high basal level of defence gene expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the tip1 mutant are largely dependent on the presence of microbiota as axenic tip1 plants have markedly reduced autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is shared by several ‘lesion mimic’-type autoimmune mutants in Arabidopsis. It is worth noting that autoimmune phenotypes caused by mutations in two Nucleotide-Binding, Leucine-Rich Repeat (NLR) genes do not require the presence of microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the existence of at least two classes of autoimmunity (microbiota-dependent versus microbiota-independent) in plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal kingdom. These parallels highlight the intricate relationship between host immunity and microbial communities across various biological systems. The authors show that dysbiotic microbiota can cause severe autoimmunity conditions in Arabidopsis plants, a concept that is reminiscent of autoimmunity–dysbiosis interactions found in mammals.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"10 9\",\"pages\":\"1363-1376\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41477-024-01779-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01779-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01779-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
在过去的三十年中,研究人员分离出了一些植物突变体,它们在没有病原体感染的情况下表现出持续激活的防御反应。这些突变体被称为自身免疫突变体,通常矮小和/或出现萎黄/坏死病变。在这里,通过对拟南芥中参与维持正常叶片微生物区系的基因进行遗传筛选,我们发现编码 S-酰基转移酶的 TIP GROWTH DEFECTIVE 1(TIP1)是在高湿度条件下防止叶片微生物区系水平和组成异常的关键角色。tip1 突变体具有典型自身免疫突变体的几种特征性表型,包括矮小身材、出现病变以及防御基因的基础表达水平较高。非生物实验显示,tip1突变体的自身免疫表型主要依赖于微生物群的存在,因为轴生的tip1植株的自身免疫表型明显降低。我们发现,拟南芥中几种 "病变模拟 "型自身免疫突变体都存在自身免疫表型依赖微生物群的现象。值得注意的是,两个核苷酸结合、富亮氨酸重复(NLR)基因突变引起的自身免疫表型并不需要微生物群的存在,甚至可以通过微生物群得到部分缓解。因此,我们的研究结果表明,植物中至少存在两类自身免疫(依赖微生物群和不依赖微生物群)。在病变模拟类自身免疫中观察到的自身免疫与微生物群之间的相互作用让人联想到动物界中自身免疫与菌群失调之间的相互作用。这些相似之处凸显了各种生物系统中宿主免疫与微生物群落之间错综复杂的关系。
Roles of microbiota in autoimmunity in Arabidopsis leaves
Over the past three decades, researchers have isolated plant mutants that show constitutively activated defence responses in the absence of pathogen infection. These mutants are called autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. Here, from a genetic screen for Arabidopsis genes involved in maintaining a normal leaf microbiota, we identified TIP GROWTH DEFECTIVE 1 (TIP1), which encodes an S-acyltransferase, as a key player in guarding leaves against abnormal microbiota level and composition under high-humidity conditions. The tip1 mutant has several characteristic phenotypes of classical autoimmune mutants, including a dwarf stature, showing lesions, and having a high basal level of defence gene expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the tip1 mutant are largely dependent on the presence of microbiota as axenic tip1 plants have markedly reduced autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is shared by several ‘lesion mimic’-type autoimmune mutants in Arabidopsis. It is worth noting that autoimmune phenotypes caused by mutations in two Nucleotide-Binding, Leucine-Rich Repeat (NLR) genes do not require the presence of microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the existence of at least two classes of autoimmunity (microbiota-dependent versus microbiota-independent) in plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal kingdom. These parallels highlight the intricate relationship between host immunity and microbial communities across various biological systems. The authors show that dysbiotic microbiota can cause severe autoimmunity conditions in Arabidopsis plants, a concept that is reminiscent of autoimmunity–dysbiosis interactions found in mammals.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.