Miguel de Jesus Oliveira Santos, Jéssica Teles-Souza, Renata Freitas de Araújo-Calumby, Robert L. Copeland Jr, Henrique Rodrigues Marcelino, Deise Souza Vilas-Bôas
{"title":"使用塞来昔布纳米载体治疗癌症的进展、局限和前景。","authors":"Miguel de Jesus Oliveira Santos, Jéssica Teles-Souza, Renata Freitas de Araújo-Calumby, Robert L. Copeland Jr, Henrique Rodrigues Marcelino, Deise Souza Vilas-Bôas","doi":"10.1186/s11671-024-04070-0","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances, limitations and perspectives in the use of celecoxib-loaded nanocarriers in therapeutics of cancer\",\"authors\":\"Miguel de Jesus Oliveira Santos, Jéssica Teles-Souza, Renata Freitas de Araújo-Calumby, Robert L. Copeland Jr, Henrique Rodrigues Marcelino, Deise Souza Vilas-Bôas\",\"doi\":\"10.1186/s11671-024-04070-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04070-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04070-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances, limitations and perspectives in the use of celecoxib-loaded nanocarriers in therapeutics of cancer
Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.