{"title":"针对多屏幕散射的块对角卡尔德隆预处理。","authors":"Kristof Cools, Carolina Urzúa-Torres","doi":"10.1007/s10543-024-01034-9","DOIUrl":null,"url":null,"abstract":"<p><p>A preconditioner is proposed for Laplace exterior boundary value problems on multi-screens. To achieve this, the quotient-space boundary element method and operator preconditioning are combined. For a fairly general subclass of multi-screens, it is shown that this approach paves the way for block diagonal Calderón preconditioners which achieve a spectral condition number that grows only logarithmically with decreasing mesh size, just as in the case of simple screens. Since the resulting scheme contains many more degrees of freedom than strictly required, strategies are presented to remove almost all redundancy without significant loss of effectiveness of the preconditioner. The performance of this method is verified by providing representative numerical results. Further numerical experiments suggest that these results can be extended to a much wider class of multi-screens that cover essentially all geometries encountered in practice, leading to a significantly reduced simulation cost.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"64 4","pages":"34"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371888/pdf/","citationCount":"0","resultStr":"{\"title\":\"Block diagonal Calderón preconditioning for scattering at multi-screens.\",\"authors\":\"Kristof Cools, Carolina Urzúa-Torres\",\"doi\":\"10.1007/s10543-024-01034-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A preconditioner is proposed for Laplace exterior boundary value problems on multi-screens. To achieve this, the quotient-space boundary element method and operator preconditioning are combined. For a fairly general subclass of multi-screens, it is shown that this approach paves the way for block diagonal Calderón preconditioners which achieve a spectral condition number that grows only logarithmically with decreasing mesh size, just as in the case of simple screens. Since the resulting scheme contains many more degrees of freedom than strictly required, strategies are presented to remove almost all redundancy without significant loss of effectiveness of the preconditioner. The performance of this method is verified by providing representative numerical results. Further numerical experiments suggest that these results can be extended to a much wider class of multi-screens that cover essentially all geometries encountered in practice, leading to a significantly reduced simulation cost.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"64 4\",\"pages\":\"34\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01034-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01034-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Block diagonal Calderón preconditioning for scattering at multi-screens.
A preconditioner is proposed for Laplace exterior boundary value problems on multi-screens. To achieve this, the quotient-space boundary element method and operator preconditioning are combined. For a fairly general subclass of multi-screens, it is shown that this approach paves the way for block diagonal Calderón preconditioners which achieve a spectral condition number that grows only logarithmically with decreasing mesh size, just as in the case of simple screens. Since the resulting scheme contains many more degrees of freedom than strictly required, strategies are presented to remove almost all redundancy without significant loss of effectiveness of the preconditioner. The performance of this method is verified by providing representative numerical results. Further numerical experiments suggest that these results can be extended to a much wider class of multi-screens that cover essentially all geometries encountered in practice, leading to a significantly reduced simulation cost.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.