{"title":"捕猎对猎物-食肉动物系统中猎物物种进化动态的影响。","authors":"Richik Bandyopadhyay, Joydev Chattopadhyay","doi":"10.1007/s00285-024-02137-1","DOIUrl":null,"url":null,"abstract":"<p><p>Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems.\",\"authors\":\"Richik Bandyopadhyay, Joydev Chattopadhyay\",\"doi\":\"10.1007/s00285-024-02137-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02137-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02137-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
Matsuda 和 Abrams(Theor Popul Biol 45(1):76-91,1994 年)通过进化开始了对物种自我灭绝的探索,其重点是在具有进化觅食特征的猎物-捕食者系统中,突变体在灭绝边界附近的有利位置。以前的模型缺乏对捕食长期影响的理论研究。在我们的模型中,我们引入了恒定努力的猎物和捕食者捕食,以及捕食者的个体逻辑增长。该模型揭示了两种截然不同的进化结果:(i) 以鞍节点分岔为标志的自杀式进化,即低觅食率突变体的入侵导致猎物灭绝;以及 (ii) 以次临界霍普夫分岔为特征的逆转进化,导致猎物循环进化。我们采用了一种基于格劳宾纳基础计算的创新方法,确定了各种分岔流形,包括折叠、跨临界、尖顶、霍普夫和波格丹诺夫-塔肯斯分岔。在其他因素保持不变的情况下,收割参数的变化会产生这些截然不同的情况,从而使该模型成为一个引人入胜的研究课题。
The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems.
Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.