{"title":"激活相关微开关介导的 β2AR 二聚体动力学早期事件","authors":"Aneesh Kotipalli, Shruti Koulgi, Vinod Jani, Uddhavesh Sonavane, Rajendra Joshi","doi":"10.1007/s00232-024-00324-1","DOIUrl":null,"url":null,"abstract":"<p><p>G-Protein-Coupled Receptors (GPCRs) make up around 3-4% of the human genome and are the targets of one-third of FDA-approved drugs. GPCRs typically exist as monomers but also aggregate to form higher-order oligomers, including dimers. β<sub>2</sub>AR, a pharmacologically relevant GPCR, is known to be targeted for the treatment of asthma and cardiovascular diseases. The activation of β<sub>2</sub>AR at the dimer level remains under-explored. In the current study, molecular dynamics (MD) simulations have been performed to understand activation-related structural changes in β<sub>2</sub>AR at the dimer level. The transition from inactive to active and vice versa has been studied by starting the simulations in the apo, agonist-bound, and inverse agonist-bound β<sub>2</sub>AR dimers for PDB ID: 2RH1 and PDB ID: 3P0G, respectively. A cumulative total of around 21-μs simulations were performed. Residue-based distances, RMSD, and PCA calculations suggested that either of the one monomer attained activation-related features for the apo and agonist-bound β<sub>2</sub>AR dimers. The TM5 and TM6 helices within the two monomers were observed to be in significant variation in all the simulations. TM5 bulge and proximity of TM2 and TM7 helices may be contributing to one of the early events in activation. The dimeric interface between TM1 and helix 8 were observed to be well maintained in the apo and agonist-bound simulations. The presence of inverse agonists favored inactive features in both the monomers. These key features of activation known for monomers were observed to have an impact on β<sub>2</sub>AR dimers, thereby providing an insight into the oligomerization mechanism of GPCRs.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Events in β<sub>2</sub>AR Dimer Dynamics Mediated by Activation-Related Microswitches.\",\"authors\":\"Aneesh Kotipalli, Shruti Koulgi, Vinod Jani, Uddhavesh Sonavane, Rajendra Joshi\",\"doi\":\"10.1007/s00232-024-00324-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>G-Protein-Coupled Receptors (GPCRs) make up around 3-4% of the human genome and are the targets of one-third of FDA-approved drugs. GPCRs typically exist as monomers but also aggregate to form higher-order oligomers, including dimers. β<sub>2</sub>AR, a pharmacologically relevant GPCR, is known to be targeted for the treatment of asthma and cardiovascular diseases. The activation of β<sub>2</sub>AR at the dimer level remains under-explored. In the current study, molecular dynamics (MD) simulations have been performed to understand activation-related structural changes in β<sub>2</sub>AR at the dimer level. The transition from inactive to active and vice versa has been studied by starting the simulations in the apo, agonist-bound, and inverse agonist-bound β<sub>2</sub>AR dimers for PDB ID: 2RH1 and PDB ID: 3P0G, respectively. A cumulative total of around 21-μs simulations were performed. Residue-based distances, RMSD, and PCA calculations suggested that either of the one monomer attained activation-related features for the apo and agonist-bound β<sub>2</sub>AR dimers. The TM5 and TM6 helices within the two monomers were observed to be in significant variation in all the simulations. TM5 bulge and proximity of TM2 and TM7 helices may be contributing to one of the early events in activation. The dimeric interface between TM1 and helix 8 were observed to be well maintained in the apo and agonist-bound simulations. The presence of inverse agonists favored inactive features in both the monomers. These key features of activation known for monomers were observed to have an impact on β<sub>2</sub>AR dimers, thereby providing an insight into the oligomerization mechanism of GPCRs.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-024-00324-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00324-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Early Events in β2AR Dimer Dynamics Mediated by Activation-Related Microswitches.
G-Protein-Coupled Receptors (GPCRs) make up around 3-4% of the human genome and are the targets of one-third of FDA-approved drugs. GPCRs typically exist as monomers but also aggregate to form higher-order oligomers, including dimers. β2AR, a pharmacologically relevant GPCR, is known to be targeted for the treatment of asthma and cardiovascular diseases. The activation of β2AR at the dimer level remains under-explored. In the current study, molecular dynamics (MD) simulations have been performed to understand activation-related structural changes in β2AR at the dimer level. The transition from inactive to active and vice versa has been studied by starting the simulations in the apo, agonist-bound, and inverse agonist-bound β2AR dimers for PDB ID: 2RH1 and PDB ID: 3P0G, respectively. A cumulative total of around 21-μs simulations were performed. Residue-based distances, RMSD, and PCA calculations suggested that either of the one monomer attained activation-related features for the apo and agonist-bound β2AR dimers. The TM5 and TM6 helices within the two monomers were observed to be in significant variation in all the simulations. TM5 bulge and proximity of TM2 and TM7 helices may be contributing to one of the early events in activation. The dimeric interface between TM1 and helix 8 were observed to be well maintained in the apo and agonist-bound simulations. The presence of inverse agonists favored inactive features in both the monomers. These key features of activation known for monomers were observed to have an impact on β2AR dimers, thereby providing an insight into the oligomerization mechanism of GPCRs.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.