{"title":"使用 Windkessel 模型量化压力波形的不确定性。","authors":"Joaquín Flores-Gerónimo, Alireza Keramat, Jordi Alastruey, Yuanting Zhang","doi":"10.1002/cnm.3867","DOIUrl":null,"url":null,"abstract":"<p><p>The Windkessel (WK) model is a simplified mathematical model used to represent the systemic arterial circulation. While the WK model is useful for studying blood flow dynamics, it suffers from inaccuracies or uncertainties that should be considered when using it to make physiological predictions. This paper aims to develop an efficient and easy-to-implement uncertainty quantification method based on a local gradient-based formulation to quantify the uncertainty of the pressure waveform resulting from aleatory uncertainties of the WK parameters and flow waveform. The proposed methodology, tested against Monte Carlo simulations, demonstrates good agreement in estimating blood pressure uncertainties due to uncertain Windkessel parameters, but less agreement considering uncertain blood-flow waveforms. To illustrate our methodology's applicability, we assessed the aortic pressure uncertainty generated by Windkessel parameters-sets from an available in silico database representing healthy adults. The results from the proposed formulation align qualitatively with those in the database and in vivo data. Furthermore, we investigated how changes in the uncertainty of the Windkessel parameters affect the uncertainty of systolic, diastolic, and pulse pressures. We found that peripheral resistance uncertainty produces the most significant change in the systolic and diastolic blood pressure uncertainties. On the other hand, compliance uncertainty considerably modifies the pulse pressure standard deviation. The presented expansion-based method is a tool for efficiently propagating the Windkessel parameters' uncertainty to the pressure waveform. The Windkessel model's clinical use depends on the reliability of the pressure in the presence of input uncertainties, which can be efficiently investigated with the proposed methodology. For instance, in wearable technology that uses sensor data and the Windkessel model to estimate systolic and diastolic blood pressures, it is important to check the confidence level in these calculations to ensure that the pressures accurately reflect the patient's cardiovascular condition.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3867"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification of the pressure waveform using a Windkessel model.\",\"authors\":\"Joaquín Flores-Gerónimo, Alireza Keramat, Jordi Alastruey, Yuanting Zhang\",\"doi\":\"10.1002/cnm.3867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Windkessel (WK) model is a simplified mathematical model used to represent the systemic arterial circulation. While the WK model is useful for studying blood flow dynamics, it suffers from inaccuracies or uncertainties that should be considered when using it to make physiological predictions. This paper aims to develop an efficient and easy-to-implement uncertainty quantification method based on a local gradient-based formulation to quantify the uncertainty of the pressure waveform resulting from aleatory uncertainties of the WK parameters and flow waveform. The proposed methodology, tested against Monte Carlo simulations, demonstrates good agreement in estimating blood pressure uncertainties due to uncertain Windkessel parameters, but less agreement considering uncertain blood-flow waveforms. To illustrate our methodology's applicability, we assessed the aortic pressure uncertainty generated by Windkessel parameters-sets from an available in silico database representing healthy adults. The results from the proposed formulation align qualitatively with those in the database and in vivo data. Furthermore, we investigated how changes in the uncertainty of the Windkessel parameters affect the uncertainty of systolic, diastolic, and pulse pressures. We found that peripheral resistance uncertainty produces the most significant change in the systolic and diastolic blood pressure uncertainties. On the other hand, compliance uncertainty considerably modifies the pulse pressure standard deviation. The presented expansion-based method is a tool for efficiently propagating the Windkessel parameters' uncertainty to the pressure waveform. The Windkessel model's clinical use depends on the reliability of the pressure in the presence of input uncertainties, which can be efficiently investigated with the proposed methodology. For instance, in wearable technology that uses sensor data and the Windkessel model to estimate systolic and diastolic blood pressures, it is important to check the confidence level in these calculations to ensure that the pressures accurately reflect the patient's cardiovascular condition.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\" \",\"pages\":\"e3867\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cnm.3867\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3867","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Uncertainty quantification of the pressure waveform using a Windkessel model.
The Windkessel (WK) model is a simplified mathematical model used to represent the systemic arterial circulation. While the WK model is useful for studying blood flow dynamics, it suffers from inaccuracies or uncertainties that should be considered when using it to make physiological predictions. This paper aims to develop an efficient and easy-to-implement uncertainty quantification method based on a local gradient-based formulation to quantify the uncertainty of the pressure waveform resulting from aleatory uncertainties of the WK parameters and flow waveform. The proposed methodology, tested against Monte Carlo simulations, demonstrates good agreement in estimating blood pressure uncertainties due to uncertain Windkessel parameters, but less agreement considering uncertain blood-flow waveforms. To illustrate our methodology's applicability, we assessed the aortic pressure uncertainty generated by Windkessel parameters-sets from an available in silico database representing healthy adults. The results from the proposed formulation align qualitatively with those in the database and in vivo data. Furthermore, we investigated how changes in the uncertainty of the Windkessel parameters affect the uncertainty of systolic, diastolic, and pulse pressures. We found that peripheral resistance uncertainty produces the most significant change in the systolic and diastolic blood pressure uncertainties. On the other hand, compliance uncertainty considerably modifies the pulse pressure standard deviation. The presented expansion-based method is a tool for efficiently propagating the Windkessel parameters' uncertainty to the pressure waveform. The Windkessel model's clinical use depends on the reliability of the pressure in the presence of input uncertainties, which can be efficiently investigated with the proposed methodology. For instance, in wearable technology that uses sensor data and the Windkessel model to estimate systolic and diastolic blood pressures, it is important to check the confidence level in these calculations to ensure that the pressures accurately reflect the patient's cardiovascular condition.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.