Rajdeep Chakraborty, Pallavi Khodlan, Aidan Tay, Fei Liu
{"title":"STAT3相互作用组预测了口腔鳞状细胞癌中调节免疫系统的蛋白质的存在。","authors":"Rajdeep Chakraborty, Pallavi Khodlan, Aidan Tay, Fei Liu","doi":"10.1016/j.job.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Signal transducer and activator of transcription 3 (STAT3) is one of the key proliferation mechanism-related proteins that helps in oral squamous cell carcinoma (OSCC) progression. Immune evasion by STAT3 is mediated by the JAK2/STAT3/PDL1 signaling axis. Based on previous findings, we hypothesized that STAT3-binding partners participate in the inhibition of anti-tumor activity in OSCC.</p><p><strong>Methods: </strong>A 3D cancer-immune co-culture model was constructed using oral cancer cell lines SCC4, SCC9, SCC25, and CAL27 and normal oral cell line OKF6. The cells were co-cultured with natural killer (NK-92) and Jurkat cells. The target protein STAT3 was chosen based on SWATH data, and co-immunoprecipitation (Co-IP)-based proteomics was conducted. The Co-IP LC-MS/MS output was analyzed to determine the protein interaction network, gene ontology, pathway analysis, and protein cluster annotation.</p><p><strong>Results: </strong>STAT3 in oral cancer cell lines interacts with the epidermal growth factor receptor (EGFR) and other proteins that participate in proliferation and immune mechanisms. Proteome analysis showed that some STAT3-binding proteins found in this study are known immune system regulators.</p><p><strong>Conclusion: </strong>Overall, STAT3 interactive proteins regulate the immune system in oral squamous cell carcinoma cells.</p>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STAT3 interactome predicts presence of proteins that regulates immune system in oral squamous cell carcinoma.\",\"authors\":\"Rajdeep Chakraborty, Pallavi Khodlan, Aidan Tay, Fei Liu\",\"doi\":\"10.1016/j.job.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Signal transducer and activator of transcription 3 (STAT3) is one of the key proliferation mechanism-related proteins that helps in oral squamous cell carcinoma (OSCC) progression. Immune evasion by STAT3 is mediated by the JAK2/STAT3/PDL1 signaling axis. Based on previous findings, we hypothesized that STAT3-binding partners participate in the inhibition of anti-tumor activity in OSCC.</p><p><strong>Methods: </strong>A 3D cancer-immune co-culture model was constructed using oral cancer cell lines SCC4, SCC9, SCC25, and CAL27 and normal oral cell line OKF6. The cells were co-cultured with natural killer (NK-92) and Jurkat cells. The target protein STAT3 was chosen based on SWATH data, and co-immunoprecipitation (Co-IP)-based proteomics was conducted. The Co-IP LC-MS/MS output was analyzed to determine the protein interaction network, gene ontology, pathway analysis, and protein cluster annotation.</p><p><strong>Results: </strong>STAT3 in oral cancer cell lines interacts with the epidermal growth factor receptor (EGFR) and other proteins that participate in proliferation and immune mechanisms. Proteome analysis showed that some STAT3-binding proteins found in this study are known immune system regulators.</p><p><strong>Conclusion: </strong>Overall, STAT3 interactive proteins regulate the immune system in oral squamous cell carcinoma cells.</p>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.job.2024.09.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.job.2024.09.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
STAT3 interactome predicts presence of proteins that regulates immune system in oral squamous cell carcinoma.
Objectives: Signal transducer and activator of transcription 3 (STAT3) is one of the key proliferation mechanism-related proteins that helps in oral squamous cell carcinoma (OSCC) progression. Immune evasion by STAT3 is mediated by the JAK2/STAT3/PDL1 signaling axis. Based on previous findings, we hypothesized that STAT3-binding partners participate in the inhibition of anti-tumor activity in OSCC.
Methods: A 3D cancer-immune co-culture model was constructed using oral cancer cell lines SCC4, SCC9, SCC25, and CAL27 and normal oral cell line OKF6. The cells were co-cultured with natural killer (NK-92) and Jurkat cells. The target protein STAT3 was chosen based on SWATH data, and co-immunoprecipitation (Co-IP)-based proteomics was conducted. The Co-IP LC-MS/MS output was analyzed to determine the protein interaction network, gene ontology, pathway analysis, and protein cluster annotation.
Results: STAT3 in oral cancer cell lines interacts with the epidermal growth factor receptor (EGFR) and other proteins that participate in proliferation and immune mechanisms. Proteome analysis showed that some STAT3-binding proteins found in this study are known immune system regulators.
Conclusion: Overall, STAT3 interactive proteins regulate the immune system in oral squamous cell carcinoma cells.