Jessica Giacomoni, Andreas Bruzelius, Mette Habekost, Janko Kajtez, Daniella Rylander Ottosson, Alessandro Fiorenzano, Petter Storm, Malin Parmar
{"title":"人类胶质细胞转化为亚型特异性神经元(包括多巴胺神经元)的三维模型。","authors":"Jessica Giacomoni, Andreas Bruzelius, Mette Habekost, Janko Kajtez, Daniella Rylander Ottosson, Alessandro Fiorenzano, Petter Storm, Malin Parmar","doi":"10.1016/j.crmeth.2024.100845","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional neuronal cultures have a limited ability to recapitulate the in vivo environment of the brain. Here, we introduce a three-dimensional in vitro model for human glia-to-neuron conversion, surpassing the spatial and temporal constrains of two-dimensional cultures. Focused on direct conversion to induced dopamine neurons (iDANs) relevant to Parkinson disease, the model generates functionally mature iDANs in 2 weeks and allows long-term survival. As proof of concept, we use single-nucleus RNA sequencing and molecular lineage tracing during iDAN generation and find that all glial subtypes generate neurons and that conversion relies on the coordinated expression of three neural conversion factors. We also show the formation of mature and functional iDANs over time. The model facilitates molecular investigations of the conversion process to enhance understanding of conversion outcomes and offers a system for in vitro reprogramming studies aimed at advancing alternative therapeutic strategies in the diseased brain.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440053/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D model for human glia conversion into subtype-specific neurons, including dopamine neurons.\",\"authors\":\"Jessica Giacomoni, Andreas Bruzelius, Mette Habekost, Janko Kajtez, Daniella Rylander Ottosson, Alessandro Fiorenzano, Petter Storm, Malin Parmar\",\"doi\":\"10.1016/j.crmeth.2024.100845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional neuronal cultures have a limited ability to recapitulate the in vivo environment of the brain. Here, we introduce a three-dimensional in vitro model for human glia-to-neuron conversion, surpassing the spatial and temporal constrains of two-dimensional cultures. Focused on direct conversion to induced dopamine neurons (iDANs) relevant to Parkinson disease, the model generates functionally mature iDANs in 2 weeks and allows long-term survival. As proof of concept, we use single-nucleus RNA sequencing and molecular lineage tracing during iDAN generation and find that all glial subtypes generate neurons and that conversion relies on the coordinated expression of three neural conversion factors. We also show the formation of mature and functional iDANs over time. The model facilitates molecular investigations of the conversion process to enhance understanding of conversion outcomes and offers a system for in vitro reprogramming studies aimed at advancing alternative therapeutic strategies in the diseased brain.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440053/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
3D model for human glia conversion into subtype-specific neurons, including dopamine neurons.
Two-dimensional neuronal cultures have a limited ability to recapitulate the in vivo environment of the brain. Here, we introduce a three-dimensional in vitro model for human glia-to-neuron conversion, surpassing the spatial and temporal constrains of two-dimensional cultures. Focused on direct conversion to induced dopamine neurons (iDANs) relevant to Parkinson disease, the model generates functionally mature iDANs in 2 weeks and allows long-term survival. As proof of concept, we use single-nucleus RNA sequencing and molecular lineage tracing during iDAN generation and find that all glial subtypes generate neurons and that conversion relies on the coordinated expression of three neural conversion factors. We also show the formation of mature and functional iDANs over time. The model facilitates molecular investigations of the conversion process to enhance understanding of conversion outcomes and offers a system for in vitro reprogramming studies aimed at advancing alternative therapeutic strategies in the diseased brain.