用于惯性约束聚变的光学复用中子飞行时间技术。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
L Tafoya, C Wilde, B Cata, M Freeman, V Geppert-Kleinrath, S Ivancic, J Katz, R McBride, A Sorce, B Stanley, C Danly
{"title":"用于惯性约束聚变的光学复用中子飞行时间技术。","authors":"L Tafoya, C Wilde, B Cata, M Freeman, V Geppert-Kleinrath, S Ivancic, J Katz, R McBride, A Sorce, B Stanley, C Danly","doi":"10.1063/5.0219572","DOIUrl":null,"url":null,"abstract":"<p><p>Neutron time-of-flight (nTOF) detectors are crucial in diagnosing the performance of inertial confinement fusion (ICF) experiments, which implode targets of deuterium-tritium fuel to achieve thermonuclear conditions. These detectors utilize the fusion neutron energy spectrum to extract key measurements, including the hotspot ion temperature and fuel areal density. Previous work [Danly et al., Rev. Sci. Instrum. 94, 043502 (2023)] has demonstrated adding 1D spatial resolution to an nTOF-like detector using a neutron aperture and streak camera to measure the ion temperature profile of an ICF implosion. By contrast, the study presented herein explores modifying the 1D detector to use a fast photomultiplier tube (PMT) to validate the design of a 2D spatially resolved instrument based on reconstruction from 1D profiles. The modification would collect time-of-flight traces from separate scintillators in an imaging array with one PMT using optical fibers of varying lengths to time-multiplex the signals. This technique has been demonstrated in ride-along experiments on the OMEGA laser with 20 fiber-coupled scintillator channels connected to a Photek PMT210. Results provide constraints on the fiber lengths and PMT gating requirements to promote pulse fidelity throughout all channels. Calibration of the detector to fixed nTOFs can provide a preliminary estimate of the instrument response function (IRF), although measurement of the IRF is currently under way. These results suggest that nTOF signals can potentially be time-multiplexed with fibers so long as the design is strategic to mitigate signal-to-noise reduction, modal dispersion, and charge build-up in the PMT, which has implications beyond ion temperature imaging.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optically multiplexed neutron time-of-flight technique for inertial confinement fusion.\",\"authors\":\"L Tafoya, C Wilde, B Cata, M Freeman, V Geppert-Kleinrath, S Ivancic, J Katz, R McBride, A Sorce, B Stanley, C Danly\",\"doi\":\"10.1063/5.0219572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutron time-of-flight (nTOF) detectors are crucial in diagnosing the performance of inertial confinement fusion (ICF) experiments, which implode targets of deuterium-tritium fuel to achieve thermonuclear conditions. These detectors utilize the fusion neutron energy spectrum to extract key measurements, including the hotspot ion temperature and fuel areal density. Previous work [Danly et al., Rev. Sci. Instrum. 94, 043502 (2023)] has demonstrated adding 1D spatial resolution to an nTOF-like detector using a neutron aperture and streak camera to measure the ion temperature profile of an ICF implosion. By contrast, the study presented herein explores modifying the 1D detector to use a fast photomultiplier tube (PMT) to validate the design of a 2D spatially resolved instrument based on reconstruction from 1D profiles. The modification would collect time-of-flight traces from separate scintillators in an imaging array with one PMT using optical fibers of varying lengths to time-multiplex the signals. This technique has been demonstrated in ride-along experiments on the OMEGA laser with 20 fiber-coupled scintillator channels connected to a Photek PMT210. Results provide constraints on the fiber lengths and PMT gating requirements to promote pulse fidelity throughout all channels. Calibration of the detector to fixed nTOFs can provide a preliminary estimate of the instrument response function (IRF), although measurement of the IRF is currently under way. These results suggest that nTOF signals can potentially be time-multiplexed with fibers so long as the design is strategic to mitigate signal-to-noise reduction, modal dispersion, and charge build-up in the PMT, which has implications beyond ion temperature imaging.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219572\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219572","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

中子飞行时间(nTOF)探测器对于诊断惯性约束聚变(ICF)实验的性能至关重要,ICF 实验通过内爆氘氚燃料目标来实现热核条件。这些探测器利用聚变中子能谱来提取关键测量值,包括热点离子温度和燃料平均密度。之前的工作[Danly 等人,Rev. Sci. Instrum.相比之下,本文介绍的研究探讨了如何修改一维探测器,使用快速光电倍增管(PMT)来验证基于一维剖面重建的二维空间分辨仪器的设计。改装后,将使用一个光电倍增管收集成像阵列中不同闪烁体的飞行时间轨迹,并使用不同长度的光纤对信号进行时间多路复用。这项技术已在欧米茄激光器的同行实验中得到验证,20 个光纤耦合闪烁体通道与 Photek PMT210 相连。实验结果为光纤长度和 PMT 门控要求提供了限制,以提高所有通道的脉冲保真度。根据固定的 nTOF 对探测器进行校准,可以初步估算出仪器响应函数(IRF),不过目前正在对 IRF 进行测量。这些结果表明,只要设计得当,nTOF 信号就有可能通过光纤进行时间多路复用,以减少信噪比降低、模态色散和 PMT 中的电荷积累,其影响超出离子温度成像的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optically multiplexed neutron time-of-flight technique for inertial confinement fusion.

Neutron time-of-flight (nTOF) detectors are crucial in diagnosing the performance of inertial confinement fusion (ICF) experiments, which implode targets of deuterium-tritium fuel to achieve thermonuclear conditions. These detectors utilize the fusion neutron energy spectrum to extract key measurements, including the hotspot ion temperature and fuel areal density. Previous work [Danly et al., Rev. Sci. Instrum. 94, 043502 (2023)] has demonstrated adding 1D spatial resolution to an nTOF-like detector using a neutron aperture and streak camera to measure the ion temperature profile of an ICF implosion. By contrast, the study presented herein explores modifying the 1D detector to use a fast photomultiplier tube (PMT) to validate the design of a 2D spatially resolved instrument based on reconstruction from 1D profiles. The modification would collect time-of-flight traces from separate scintillators in an imaging array with one PMT using optical fibers of varying lengths to time-multiplex the signals. This technique has been demonstrated in ride-along experiments on the OMEGA laser with 20 fiber-coupled scintillator channels connected to a Photek PMT210. Results provide constraints on the fiber lengths and PMT gating requirements to promote pulse fidelity throughout all channels. Calibration of the detector to fixed nTOFs can provide a preliminary estimate of the instrument response function (IRF), although measurement of the IRF is currently under way. These results suggest that nTOF signals can potentially be time-multiplexed with fibers so long as the design is strategic to mitigate signal-to-noise reduction, modal dispersion, and charge build-up in the PMT, which has implications beyond ion temperature imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信