{"title":"深度学习辅助肺癌交互式轮廓绘制:对轮廓绘制时间和一致性的影响","authors":"","doi":"10.1016/j.radonc.2024.110500","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><p>To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on inter-observer variability and the time taken to complete tumour contouring.</p></div><div><h3>Materials and Methods</h3><p>Nine clinicians contoured the gross tumour volume (GTV) using the PET-CT scans of 10 non-small cell lung cancer (NSCLC) patients, either using DL-assisted or manual contouring tools. After contouring a case using one contouring method, the same case was contoured one week later using the other method. The contours and time taken were compared.</p></div><div><h3>Results</h3><p>Use of the DL-assisted tool led to a statistically significant decrease in active contouring time of 23 % relative to the standard manual segmentation method (p < 0.01). The mean observation time for all clinicians and cases made up nearly 60 % of interaction time for both contouring approaches. On average the time spent contouring per case was reduced from 22 min to 19 min when using the DL-assisted tool. Additionally, the DL-assisted tool reduced contour variability in the parts of tumour where clinicians tended to disagree the most, while the consensus contour was similar whichever of the two contouring approaches was used.</p></div><div><h3>Conclusions</h3><p>A DL-assisted interactive contouring approach decreased active contouring time and local inter-observer variability when used to delineate lung cancer GTVs compared to a standard manual method. Integration of this tool into the clinical workflow could assist clinicians in contouring tasks and improve contouring efficiency.</p></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167814024007709/pdfft?md5=8fc6323e4fa571961ec2a84da65d7a36&pid=1-s2.0-S0167814024007709-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency\",\"authors\":\"\",\"doi\":\"10.1016/j.radonc.2024.110500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Purpose</h3><p>To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on inter-observer variability and the time taken to complete tumour contouring.</p></div><div><h3>Materials and Methods</h3><p>Nine clinicians contoured the gross tumour volume (GTV) using the PET-CT scans of 10 non-small cell lung cancer (NSCLC) patients, either using DL-assisted or manual contouring tools. After contouring a case using one contouring method, the same case was contoured one week later using the other method. The contours and time taken were compared.</p></div><div><h3>Results</h3><p>Use of the DL-assisted tool led to a statistically significant decrease in active contouring time of 23 % relative to the standard manual segmentation method (p < 0.01). The mean observation time for all clinicians and cases made up nearly 60 % of interaction time for both contouring approaches. On average the time spent contouring per case was reduced from 22 min to 19 min when using the DL-assisted tool. Additionally, the DL-assisted tool reduced contour variability in the parts of tumour where clinicians tended to disagree the most, while the consensus contour was similar whichever of the two contouring approaches was used.</p></div><div><h3>Conclusions</h3><p>A DL-assisted interactive contouring approach decreased active contouring time and local inter-observer variability when used to delineate lung cancer GTVs compared to a standard manual method. Integration of this tool into the clinical workflow could assist clinicians in contouring tasks and improve contouring efficiency.</p></div>\",\"PeriodicalId\":21041,\"journal\":{\"name\":\"Radiotherapy and Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167814024007709/pdfft?md5=8fc6323e4fa571961ec2a84da65d7a36&pid=1-s2.0-S0167814024007709-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiotherapy and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167814024007709\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814024007709","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency
Background and Purpose
To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on inter-observer variability and the time taken to complete tumour contouring.
Materials and Methods
Nine clinicians contoured the gross tumour volume (GTV) using the PET-CT scans of 10 non-small cell lung cancer (NSCLC) patients, either using DL-assisted or manual contouring tools. After contouring a case using one contouring method, the same case was contoured one week later using the other method. The contours and time taken were compared.
Results
Use of the DL-assisted tool led to a statistically significant decrease in active contouring time of 23 % relative to the standard manual segmentation method (p < 0.01). The mean observation time for all clinicians and cases made up nearly 60 % of interaction time for both contouring approaches. On average the time spent contouring per case was reduced from 22 min to 19 min when using the DL-assisted tool. Additionally, the DL-assisted tool reduced contour variability in the parts of tumour where clinicians tended to disagree the most, while the consensus contour was similar whichever of the two contouring approaches was used.
Conclusions
A DL-assisted interactive contouring approach decreased active contouring time and local inter-observer variability when used to delineate lung cancer GTVs compared to a standard manual method. Integration of this tool into the clinical workflow could assist clinicians in contouring tasks and improve contouring efficiency.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.