{"title":"ABA 通过影响拟南芥 WUS 的 H3K9ac 修饰抑制离体芽再生。","authors":"Yuguang Song, Xinru Ding, Xueying Sun, Zhaoran Zhang, Wei Dong","doi":"10.1007/s00709-024-01984-5","DOIUrl":null,"url":null,"abstract":"<p><p>The phytohormone abscisic acid (ABA) is an important regulator of plant growth, but its potential participation in the process of in vitro shoot regeneration has not to date been reported. Here, we found that ABA appeared to inhibit in vitro shoot regeneration. ABA represses the formation of stem cell niches, thereby reducing the shoot regeneration by localizing the expression of WUSCHEL (WUS). During in vitro shoot regeneration, enrichment of H3K9ac in the specific region of WUS is a necessary event for its activation which could be inhibited by exogenous ABA. These findings reveal the potential function, as well as the possible way of ABA in regulating de novo shoot regeneration in Arabidopsis.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"1327-1333"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABA inhibits in vitro shoot regeneration by affecting H3K9ac modification of WUS in Arabidopsis.\",\"authors\":\"Yuguang Song, Xinru Ding, Xueying Sun, Zhaoran Zhang, Wei Dong\",\"doi\":\"10.1007/s00709-024-01984-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The phytohormone abscisic acid (ABA) is an important regulator of plant growth, but its potential participation in the process of in vitro shoot regeneration has not to date been reported. Here, we found that ABA appeared to inhibit in vitro shoot regeneration. ABA represses the formation of stem cell niches, thereby reducing the shoot regeneration by localizing the expression of WUSCHEL (WUS). During in vitro shoot regeneration, enrichment of H3K9ac in the specific region of WUS is a necessary event for its activation which could be inhibited by exogenous ABA. These findings reveal the potential function, as well as the possible way of ABA in regulating de novo shoot regeneration in Arabidopsis.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"1327-1333\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01984-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01984-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
植物激素脱落酸(ABA)是植物生长的重要调节剂,但迄今为止,尚未有关于它可能参与离体芽再生过程的报道。在这里,我们发现 ABA 似乎能抑制离体芽再生。ABA 可抑制干细胞龛的形成,从而通过定位 WUSCHEL(WUS)的表达减少嫩枝再生。在离体芽再生过程中,WUS特定区域中H3K9ac的富集是其激活的必要条件,而外源ABA可抑制这一激活。这些发现揭示了 ABA 在调节拟南芥新芽再生中的潜在功能和可能途径。
ABA inhibits in vitro shoot regeneration by affecting H3K9ac modification of WUS in Arabidopsis.
The phytohormone abscisic acid (ABA) is an important regulator of plant growth, but its potential participation in the process of in vitro shoot regeneration has not to date been reported. Here, we found that ABA appeared to inhibit in vitro shoot regeneration. ABA represses the formation of stem cell niches, thereby reducing the shoot regeneration by localizing the expression of WUSCHEL (WUS). During in vitro shoot regeneration, enrichment of H3K9ac in the specific region of WUS is a necessary event for its activation which could be inhibited by exogenous ABA. These findings reveal the potential function, as well as the possible way of ABA in regulating de novo shoot regeneration in Arabidopsis.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".