{"title":"凋亡代谢物通过 TCOF1/FLVCR1 介导的线粒体平衡改善骨老化表型。","authors":"Yan Qu, Bowen Meng, Simin Cai, Benyi Yang, Yifan He, Chaoran Fu, Xiangxia Li, Peiyi Li, Zeyuan Cao, Xueli Mao, Wei Teng, Songtao Shi","doi":"10.1186/s12951-024-02820-x","DOIUrl":null,"url":null,"abstract":"<p><p>Over 50 billion cells undergo apoptosis each day in an adult human to maintain tissue homeostasis by eliminating damaged or unwanted cells. Apoptotic deficiency can lead to age-related diseases with reduced apoptotic metabolites. However, whether apoptotic metabolism regulates aging is unclear. Here, we show that aging mice and apoptosis-deficient MRL/lpr (B6.MRL-Faslpr/J) mice exhibit decreased apoptotic levels along with increased aging phenotypes in the skeletal bones, which can be rescued by the treatment with apoptosis inducer staurosporine (STS) and stem cell-derived apoptotic vesicles (apoVs). Moreover, embryonic stem cells (ESC)-apoVs can significantly reduce senescent hallmarks and mtDNA leakage to rejuvenate aging bone marrow mesenchymal stem cells (MSCs) and ameliorate senile osteoporosis when compared to MSC-apoVs. Mechanistically, ESC-apoVs use TCOF1 to upregulate mitochondrial protein transcription, resulting in FLVCR1-mediated mitochondrial functional homeostasis. Taken together, this study reveals a previously unknown role of apoptotic metabolites in ameliorating bone aging phenotypes and the unique role of TCOF1/FLVCR1 in maintaining mitochondrial homeostasis.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378613/pdf/","citationCount":"0","resultStr":"{\"title\":\"Apoptotic metabolites ameliorate bone aging phenotypes via TCOF1/FLVCR1-mediated mitochondrial homeostasis.\",\"authors\":\"Yan Qu, Bowen Meng, Simin Cai, Benyi Yang, Yifan He, Chaoran Fu, Xiangxia Li, Peiyi Li, Zeyuan Cao, Xueli Mao, Wei Teng, Songtao Shi\",\"doi\":\"10.1186/s12951-024-02820-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over 50 billion cells undergo apoptosis each day in an adult human to maintain tissue homeostasis by eliminating damaged or unwanted cells. Apoptotic deficiency can lead to age-related diseases with reduced apoptotic metabolites. However, whether apoptotic metabolism regulates aging is unclear. Here, we show that aging mice and apoptosis-deficient MRL/lpr (B6.MRL-Faslpr/J) mice exhibit decreased apoptotic levels along with increased aging phenotypes in the skeletal bones, which can be rescued by the treatment with apoptosis inducer staurosporine (STS) and stem cell-derived apoptotic vesicles (apoVs). Moreover, embryonic stem cells (ESC)-apoVs can significantly reduce senescent hallmarks and mtDNA leakage to rejuvenate aging bone marrow mesenchymal stem cells (MSCs) and ameliorate senile osteoporosis when compared to MSC-apoVs. Mechanistically, ESC-apoVs use TCOF1 to upregulate mitochondrial protein transcription, resulting in FLVCR1-mediated mitochondrial functional homeostasis. Taken together, this study reveals a previously unknown role of apoptotic metabolites in ameliorating bone aging phenotypes and the unique role of TCOF1/FLVCR1 in maintaining mitochondrial homeostasis.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378613/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-02820-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02820-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Apoptotic metabolites ameliorate bone aging phenotypes via TCOF1/FLVCR1-mediated mitochondrial homeostasis.
Over 50 billion cells undergo apoptosis each day in an adult human to maintain tissue homeostasis by eliminating damaged or unwanted cells. Apoptotic deficiency can lead to age-related diseases with reduced apoptotic metabolites. However, whether apoptotic metabolism regulates aging is unclear. Here, we show that aging mice and apoptosis-deficient MRL/lpr (B6.MRL-Faslpr/J) mice exhibit decreased apoptotic levels along with increased aging phenotypes in the skeletal bones, which can be rescued by the treatment with apoptosis inducer staurosporine (STS) and stem cell-derived apoptotic vesicles (apoVs). Moreover, embryonic stem cells (ESC)-apoVs can significantly reduce senescent hallmarks and mtDNA leakage to rejuvenate aging bone marrow mesenchymal stem cells (MSCs) and ameliorate senile osteoporosis when compared to MSC-apoVs. Mechanistically, ESC-apoVs use TCOF1 to upregulate mitochondrial protein transcription, resulting in FLVCR1-mediated mitochondrial functional homeostasis. Taken together, this study reveals a previously unknown role of apoptotic metabolites in ameliorating bone aging phenotypes and the unique role of TCOF1/FLVCR1 in maintaining mitochondrial homeostasis.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.