Frederic J F Viseux, Maxime Billot, Grant Handrigan, Martin Simoneau
{"title":"与足底感知灵敏度阈值相比,踝关节扭矩方差是衡量平衡控制性能的更好指标。","authors":"Frederic J F Viseux, Maxime Billot, Grant Handrigan, Martin Simoneau","doi":"10.1152/japplphysiol.00091.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We explored whether ankle torque variability or plantar perceptual threshold explains human balance control more effectively. We hypothesized that ankle torque variance is a better indicator of center of pressure (COP) velocity variance than plantar perceptual sensitivity. Two conditions were tested: loaded (23-kg vest added) and unloaded, as loading should diminish plantar sensitivity and increase COP velocity variability. We created a linear feedback model to assess the noise change in the sensorimotor loop induced by loading. Plantar sensitivity was quantified using a psychophysical approach while participants stood barefoot. A linear motor applied a force impulse on the participant's heel. A \"yes-no\" method of limits was selected to identify plantar sole sensory thresholds in both conditions. We observed reduced plantar sensitivity in loaded compared with unloaded conditions. In the loaded condition, participants exhibited greater COP velocity variance, with significant positive Pearson's correlations confirming a substantial association between ankle torque and COP velocity variances for both loaded [variance accounted for (VAF): <i>r</i><sup>2</sup> = 44.56%, <i>P</i> = 0.018] and unloaded conditions (VAF: <i>r</i><sup>2</sup> = 58.83%, <i>P</i> = 0.004). No significant correlation existed between COP velocity variance and plantar sensitivity threshold for both loaded (VAF: <i>r</i><sup>2</sup> = 0.002%, <i>P</i> = 0.99) and unloaded conditions (VAF: <i>r</i><sup>2</sup> = 21.81%, <i>P</i> = 0.35). The model confirmed an ∼88% rise in sensorimotor loop noise in the loaded condition. Ankle torque variance assesses the precision of nonperceptual and perceptual detection mechanisms in evaluating whole body motions and the accuracy in converting sensory cues into ankle torque.<b>NEW & NOTEWORTHY</b> Plantar cutaneous information contributes to balance control by modulating motor commands, but plantar perceptual sensitivity is a suboptimal indicator of balance performance. Multiple sensory cues encode whole body dynamics, guiding sensorimotor mechanisms to minimize body sway variability. Ankle torque variance is proposed as a superior measure for explaining balance control performance and evaluating the sensorimotor loop's functioning in balance control.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"1082-1091"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ankle torque variance is a better indicator of balance control performance than plantar perceptual sensitivity threshold.\",\"authors\":\"Frederic J F Viseux, Maxime Billot, Grant Handrigan, Martin Simoneau\",\"doi\":\"10.1152/japplphysiol.00091.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We explored whether ankle torque variability or plantar perceptual threshold explains human balance control more effectively. We hypothesized that ankle torque variance is a better indicator of center of pressure (COP) velocity variance than plantar perceptual sensitivity. Two conditions were tested: loaded (23-kg vest added) and unloaded, as loading should diminish plantar sensitivity and increase COP velocity variability. We created a linear feedback model to assess the noise change in the sensorimotor loop induced by loading. Plantar sensitivity was quantified using a psychophysical approach while participants stood barefoot. A linear motor applied a force impulse on the participant's heel. A \\\"yes-no\\\" method of limits was selected to identify plantar sole sensory thresholds in both conditions. We observed reduced plantar sensitivity in loaded compared with unloaded conditions. In the loaded condition, participants exhibited greater COP velocity variance, with significant positive Pearson's correlations confirming a substantial association between ankle torque and COP velocity variances for both loaded [variance accounted for (VAF): <i>r</i><sup>2</sup> = 44.56%, <i>P</i> = 0.018] and unloaded conditions (VAF: <i>r</i><sup>2</sup> = 58.83%, <i>P</i> = 0.004). No significant correlation existed between COP velocity variance and plantar sensitivity threshold for both loaded (VAF: <i>r</i><sup>2</sup> = 0.002%, <i>P</i> = 0.99) and unloaded conditions (VAF: <i>r</i><sup>2</sup> = 21.81%, <i>P</i> = 0.35). The model confirmed an ∼88% rise in sensorimotor loop noise in the loaded condition. Ankle torque variance assesses the precision of nonperceptual and perceptual detection mechanisms in evaluating whole body motions and the accuracy in converting sensory cues into ankle torque.<b>NEW & NOTEWORTHY</b> Plantar cutaneous information contributes to balance control by modulating motor commands, but plantar perceptual sensitivity is a suboptimal indicator of balance performance. Multiple sensory cues encode whole body dynamics, guiding sensorimotor mechanisms to minimize body sway variability. Ankle torque variance is proposed as a superior measure for explaining balance control performance and evaluating the sensorimotor loop's functioning in balance control.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":\" \",\"pages\":\"1082-1091\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00091.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00091.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Ankle torque variance is a better indicator of balance control performance than plantar perceptual sensitivity threshold.
We explored whether ankle torque variability or plantar perceptual threshold explains human balance control more effectively. We hypothesized that ankle torque variance is a better indicator of center of pressure (COP) velocity variance than plantar perceptual sensitivity. Two conditions were tested: loaded (23-kg vest added) and unloaded, as loading should diminish plantar sensitivity and increase COP velocity variability. We created a linear feedback model to assess the noise change in the sensorimotor loop induced by loading. Plantar sensitivity was quantified using a psychophysical approach while participants stood barefoot. A linear motor applied a force impulse on the participant's heel. A "yes-no" method of limits was selected to identify plantar sole sensory thresholds in both conditions. We observed reduced plantar sensitivity in loaded compared with unloaded conditions. In the loaded condition, participants exhibited greater COP velocity variance, with significant positive Pearson's correlations confirming a substantial association between ankle torque and COP velocity variances for both loaded [variance accounted for (VAF): r2 = 44.56%, P = 0.018] and unloaded conditions (VAF: r2 = 58.83%, P = 0.004). No significant correlation existed between COP velocity variance and plantar sensitivity threshold for both loaded (VAF: r2 = 0.002%, P = 0.99) and unloaded conditions (VAF: r2 = 21.81%, P = 0.35). The model confirmed an ∼88% rise in sensorimotor loop noise in the loaded condition. Ankle torque variance assesses the precision of nonperceptual and perceptual detection mechanisms in evaluating whole body motions and the accuracy in converting sensory cues into ankle torque.NEW & NOTEWORTHY Plantar cutaneous information contributes to balance control by modulating motor commands, but plantar perceptual sensitivity is a suboptimal indicator of balance performance. Multiple sensory cues encode whole body dynamics, guiding sensorimotor mechanisms to minimize body sway variability. Ankle torque variance is proposed as a superior measure for explaining balance control performance and evaluating the sensorimotor loop's functioning in balance control.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.