利用 Python 中的二次多项式进行高级数据分析。

Q2 Pharmacology, Toxicology and Pharmaceutics
F1000Research Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI:10.12688/f1000research.149391.2
Rostyslav Sipakov, Olena Voloshkina, Anastasiia Kovalova
{"title":"利用 Python 中的二次多项式进行高级数据分析。","authors":"Rostyslav Sipakov, Olena Voloshkina, Anastasiia Kovalova","doi":"10.12688/f1000research.149391.2","DOIUrl":null,"url":null,"abstract":"<p><p>This research explores the application of quadratic polynomials in Python for advanced data analysis. The study demonstrates how quadratic models can effectively capture nonlinear relationships in complex datasets by leveraging Python libraries such as NumPy, Matplotlib, scikit-learn, and Pandas. The methodology involves fitting quadratic polynomials to the data using least-squares regression and evaluating the model fit using the coefficient of determination (R-squared). The results highlight the strong performance of the quadratic polynomial fit, as evidenced by high R-squared values, indicating the model's ability to explain a substantial proportion of the data variability. Comparisons with linear and cubic models further underscore the quadratic model's balance between simplicity and precision for many practical applications. The study also acknowledges the limitations of quadratic polynomials and proposes future research directions to enhance their accuracy and efficiency for diverse data analysis tasks. This research bridges the gap between theoretical concepts and practical implementation, providing an accessible Python-based tool for leveraging quadratic polynomials in data analysis.</p>","PeriodicalId":12260,"journal":{"name":"F1000Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375405/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging Quadratic Polynomials in Python for Advanced Data Analysis.\",\"authors\":\"Rostyslav Sipakov, Olena Voloshkina, Anastasiia Kovalova\",\"doi\":\"10.12688/f1000research.149391.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research explores the application of quadratic polynomials in Python for advanced data analysis. The study demonstrates how quadratic models can effectively capture nonlinear relationships in complex datasets by leveraging Python libraries such as NumPy, Matplotlib, scikit-learn, and Pandas. The methodology involves fitting quadratic polynomials to the data using least-squares regression and evaluating the model fit using the coefficient of determination (R-squared). The results highlight the strong performance of the quadratic polynomial fit, as evidenced by high R-squared values, indicating the model's ability to explain a substantial proportion of the data variability. Comparisons with linear and cubic models further underscore the quadratic model's balance between simplicity and precision for many practical applications. The study also acknowledges the limitations of quadratic polynomials and proposes future research directions to enhance their accuracy and efficiency for diverse data analysis tasks. This research bridges the gap between theoretical concepts and practical implementation, providing an accessible Python-based tool for leveraging quadratic polynomials in data analysis.</p>\",\"PeriodicalId\":12260,\"journal\":{\"name\":\"F1000Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375405/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"F1000Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/f1000research.149391.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.149391.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在 Python 中应用二次多项式进行高级数据分析。研究展示了二次模型如何利用 NumPy、Matplotlib、scikit-learn 和 Pandas 等 Python 库有效捕捉复杂数据集中的非线性关系。该方法包括使用最小二乘回归对数据进行二次多项式拟合,并使用判定系数(R 平方)评估模型拟合度。结果凸显了二次多项式拟合的强大性能,高 R 平方值证明了这一点,表明该模型有能力解释很大一部分数据变异性。与线性模型和三次模型的比较进一步强调了二次模型在许多实际应用中的简单性和精确性之间的平衡。研究还承认二次多项式的局限性,并提出了未来的研究方向,以提高其在各种数据分析任务中的准确性和效率。这项研究在理论概念和实际应用之间架起了一座桥梁,为在数据分析中利用二次多项式提供了一个基于 Python 的易用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Quadratic Polynomials in Python for Advanced Data Analysis.

This research explores the application of quadratic polynomials in Python for advanced data analysis. The study demonstrates how quadratic models can effectively capture nonlinear relationships in complex datasets by leveraging Python libraries such as NumPy, Matplotlib, scikit-learn, and Pandas. The methodology involves fitting quadratic polynomials to the data using least-squares regression and evaluating the model fit using the coefficient of determination (R-squared). The results highlight the strong performance of the quadratic polynomial fit, as evidenced by high R-squared values, indicating the model's ability to explain a substantial proportion of the data variability. Comparisons with linear and cubic models further underscore the quadratic model's balance between simplicity and precision for many practical applications. The study also acknowledges the limitations of quadratic polynomials and proposes future research directions to enhance their accuracy and efficiency for diverse data analysis tasks. This research bridges the gap between theoretical concepts and practical implementation, providing an accessible Python-based tool for leveraging quadratic polynomials in data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
F1000Research
F1000Research Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.00
自引率
0.00%
发文量
1646
审稿时长
1 weeks
期刊介绍: F1000Research publishes articles and other research outputs reporting basic scientific, scholarly, translational and clinical research across the physical and life sciences, engineering, medicine, social sciences and humanities. F1000Research is a scholarly publication platform set up for the scientific, scholarly and medical research community; each article has at least one author who is a qualified researcher, scholar or clinician actively working in their speciality and who has made a key contribution to the article. Articles must be original (not duplications). All research is suitable irrespective of the perceived level of interest or novelty; we welcome confirmatory and negative results, as well as null studies. F1000Research publishes different type of research, including clinical trials, systematic reviews, software tools, method articles, and many others. Reviews and Opinion articles providing a balanced and comprehensive overview of the latest discoveries in a particular field, or presenting a personal perspective on recent developments, are also welcome. See the full list of article types we accept for more information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信