Tao Xie, Yang Gao, Jiamin Hu, Rongkui Luo, Yinglong Guo, Qiang Xie, Chaolong Yan, Yifan Tang, Pin Chen, Zijiang Yang, Qinqin Yu, Fan Hu, Xiaobiao Zhang
{"title":"侵袭海绵窦的垂体神经内分泌肿瘤的基质硬度增加是由 TAFs 激活的:关注机械特征。","authors":"Tao Xie, Yang Gao, Jiamin Hu, Rongkui Luo, Yinglong Guo, Qiang Xie, Chaolong Yan, Yifan Tang, Pin Chen, Zijiang Yang, Qinqin Yu, Fan Hu, Xiaobiao Zhang","doi":"10.1007/s12020-024-04022-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pituitary neuroendocrine tumors (PitNETs) with invasion of the cavernous sinus (CS) are particularly challenging to treat. Tumor associated fibroblasts (TAFs) are recognized for their pivotal role in reprogramming extracellular matrix (ECM). Herein, we aimed to explore the potential involvement of TAFs in ECM reprogramming and elucidate the underlying mechanism involved.</p><p><strong>Methods: </strong>We applied dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to measure tumor vessel permeability and applied atomic force microscopy (AFM) to measure the matrix stiffness of PitNETs located in both CS and sella turcica (ST). Western blotting, immunofluorescence, immunohistochemistry, and quantitative RT-PCR were utilized to analyze the ECM components. Proteomic biochemical analysis was utilized to uncover potential mechanisms governing ECM dynamics.</p><p><strong>Results: </strong>We found that PitNETs in the CS were stiffer than those in the ST. Increased ECM stiffness within the CS facilitated the acquisition of stem-like properties, enhanced proliferation, and induced epithelial-to-mesenchymal transition (EMT) of GH3 cells. Furthermore, the expression levels of lysyl oxidase (LOX), matrix metallopeptidase 2 (MMP2) and MMP9 in pituitary adenoma cells increased in the stiffer matrix. Proteomic analysis suggested TAFs were activated in the CS area and contributed enhanced matrix stiffness by secreting Col-1 and Col-3. Furthermore, mTOR pathway was activated under higher matrix stiffness and the migration and invasion of GH3 cells be repressed by mTOR inhibitor.</p><p><strong>Conclusion: </strong>These findings demonstrated that activated TAFs contributed to stiffer matrix and increased ECM stiffness stimulating mTOR pathway in pituitary tumor cells. Our study indicated that mTOR inhibitor was a promising treatment strategy from the standpoint of PitNET biomechanical properties.</p>","PeriodicalId":11572,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased matrix stiffness in pituitary neuroendocrine tumors invading the cavernous sinus is activated by TAFs: focus on the mechanical signatures.\",\"authors\":\"Tao Xie, Yang Gao, Jiamin Hu, Rongkui Luo, Yinglong Guo, Qiang Xie, Chaolong Yan, Yifan Tang, Pin Chen, Zijiang Yang, Qinqin Yu, Fan Hu, Xiaobiao Zhang\",\"doi\":\"10.1007/s12020-024-04022-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Pituitary neuroendocrine tumors (PitNETs) with invasion of the cavernous sinus (CS) are particularly challenging to treat. Tumor associated fibroblasts (TAFs) are recognized for their pivotal role in reprogramming extracellular matrix (ECM). Herein, we aimed to explore the potential involvement of TAFs in ECM reprogramming and elucidate the underlying mechanism involved.</p><p><strong>Methods: </strong>We applied dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to measure tumor vessel permeability and applied atomic force microscopy (AFM) to measure the matrix stiffness of PitNETs located in both CS and sella turcica (ST). Western blotting, immunofluorescence, immunohistochemistry, and quantitative RT-PCR were utilized to analyze the ECM components. Proteomic biochemical analysis was utilized to uncover potential mechanisms governing ECM dynamics.</p><p><strong>Results: </strong>We found that PitNETs in the CS were stiffer than those in the ST. Increased ECM stiffness within the CS facilitated the acquisition of stem-like properties, enhanced proliferation, and induced epithelial-to-mesenchymal transition (EMT) of GH3 cells. Furthermore, the expression levels of lysyl oxidase (LOX), matrix metallopeptidase 2 (MMP2) and MMP9 in pituitary adenoma cells increased in the stiffer matrix. Proteomic analysis suggested TAFs were activated in the CS area and contributed enhanced matrix stiffness by secreting Col-1 and Col-3. Furthermore, mTOR pathway was activated under higher matrix stiffness and the migration and invasion of GH3 cells be repressed by mTOR inhibitor.</p><p><strong>Conclusion: </strong>These findings demonstrated that activated TAFs contributed to stiffer matrix and increased ECM stiffness stimulating mTOR pathway in pituitary tumor cells. Our study indicated that mTOR inhibitor was a promising treatment strategy from the standpoint of PitNET biomechanical properties.</p>\",\"PeriodicalId\":11572,\"journal\":{\"name\":\"Endocrine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12020-024-04022-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-024-04022-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Increased matrix stiffness in pituitary neuroendocrine tumors invading the cavernous sinus is activated by TAFs: focus on the mechanical signatures.
Purpose: Pituitary neuroendocrine tumors (PitNETs) with invasion of the cavernous sinus (CS) are particularly challenging to treat. Tumor associated fibroblasts (TAFs) are recognized for their pivotal role in reprogramming extracellular matrix (ECM). Herein, we aimed to explore the potential involvement of TAFs in ECM reprogramming and elucidate the underlying mechanism involved.
Methods: We applied dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to measure tumor vessel permeability and applied atomic force microscopy (AFM) to measure the matrix stiffness of PitNETs located in both CS and sella turcica (ST). Western blotting, immunofluorescence, immunohistochemistry, and quantitative RT-PCR were utilized to analyze the ECM components. Proteomic biochemical analysis was utilized to uncover potential mechanisms governing ECM dynamics.
Results: We found that PitNETs in the CS were stiffer than those in the ST. Increased ECM stiffness within the CS facilitated the acquisition of stem-like properties, enhanced proliferation, and induced epithelial-to-mesenchymal transition (EMT) of GH3 cells. Furthermore, the expression levels of lysyl oxidase (LOX), matrix metallopeptidase 2 (MMP2) and MMP9 in pituitary adenoma cells increased in the stiffer matrix. Proteomic analysis suggested TAFs were activated in the CS area and contributed enhanced matrix stiffness by secreting Col-1 and Col-3. Furthermore, mTOR pathway was activated under higher matrix stiffness and the migration and invasion of GH3 cells be repressed by mTOR inhibitor.
Conclusion: These findings demonstrated that activated TAFs contributed to stiffer matrix and increased ECM stiffness stimulating mTOR pathway in pituitary tumor cells. Our study indicated that mTOR inhibitor was a promising treatment strategy from the standpoint of PitNET biomechanical properties.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.