Zhenguang Mao, Fang Gao, Tuo Sun, Yi Xiao, Jiajin Wu, Yanping Xiao, Haiyan Chu, Dongmei Wu, Mulong Du, Rui Zheng, Zhengdong Zhang
{"title":"RB1 基因突变通过调节细胞色素 P450 途径诱发与吸烟相关的膀胱癌","authors":"Zhenguang Mao, Fang Gao, Tuo Sun, Yi Xiao, Jiajin Wu, Yanping Xiao, Haiyan Chu, Dongmei Wu, Mulong Du, Rui Zheng, Zhengdong Zhang","doi":"10.1002/tox.24409","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cigarette smoking causes multiple cancers by directly influencing mutation burden of driver mutations. However, the mechanism between somatic mutation caused by cigarette smoking and bladder tumorigenesis remains elusive. Smoking-related mutation profile of bladder cancer was characterized by The Cancer Genome Atlas cohort. Integraticve OncoGenomics database was utilized to detect the smoking-related driver genes, and its biological mechanism predictions were interpreted based on bulk transcriptome and single-cell transcriptome, as well as cell experiments. Cigarette smoking was associated with an increased tumor mutational burden under 65 years old (<i>p</i> = 0.031), and generated specific mutational signatures in smokers. <i>RB1</i> was identified as a differentially mutated driver gene between smokers and nonsmokers, and the mutation rate of <i>RB1</i> increased twofold after smoking (<i>p</i> = 0.008). <i>RB1</i> mutations and the 4-aminobiphenyl interference could significantly decrease the <i>RB1</i> expression level and thus promote the proliferation, invasion, and migration ability of bladder cancer cells. Enrichment analysis and real-time quantitative PCR (RT-qPCR) data showed that <i>RB1</i> mutations inhibited cytochrome P450 pathway by reducing expression levels of <i>UGT1A6</i> and <i>AKR1C2</i>. In addition, we also observed that the component of immunological cells was regulated by <i>RB1</i> mutations through the stronger cell-to-cell interactions between epithelial scissor<sup>+</sup> cells and immune cells in smokers. This study highlighted that <i>RB1</i> mutations could drive smoking-related bladder tumorigenesis through inhibiting cytochrome P450 pathway and regulating tumor immune microenvironment.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 12","pages":"5357-5370"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RB1 Mutations Induce Smoking-Related Bladder Cancer by Modulating the Cytochrome P450 Pathway\",\"authors\":\"Zhenguang Mao, Fang Gao, Tuo Sun, Yi Xiao, Jiajin Wu, Yanping Xiao, Haiyan Chu, Dongmei Wu, Mulong Du, Rui Zheng, Zhengdong Zhang\",\"doi\":\"10.1002/tox.24409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cigarette smoking causes multiple cancers by directly influencing mutation burden of driver mutations. However, the mechanism between somatic mutation caused by cigarette smoking and bladder tumorigenesis remains elusive. Smoking-related mutation profile of bladder cancer was characterized by The Cancer Genome Atlas cohort. Integraticve OncoGenomics database was utilized to detect the smoking-related driver genes, and its biological mechanism predictions were interpreted based on bulk transcriptome and single-cell transcriptome, as well as cell experiments. Cigarette smoking was associated with an increased tumor mutational burden under 65 years old (<i>p</i> = 0.031), and generated specific mutational signatures in smokers. <i>RB1</i> was identified as a differentially mutated driver gene between smokers and nonsmokers, and the mutation rate of <i>RB1</i> increased twofold after smoking (<i>p</i> = 0.008). <i>RB1</i> mutations and the 4-aminobiphenyl interference could significantly decrease the <i>RB1</i> expression level and thus promote the proliferation, invasion, and migration ability of bladder cancer cells. Enrichment analysis and real-time quantitative PCR (RT-qPCR) data showed that <i>RB1</i> mutations inhibited cytochrome P450 pathway by reducing expression levels of <i>UGT1A6</i> and <i>AKR1C2</i>. In addition, we also observed that the component of immunological cells was regulated by <i>RB1</i> mutations through the stronger cell-to-cell interactions between epithelial scissor<sup>+</sup> cells and immune cells in smokers. This study highlighted that <i>RB1</i> mutations could drive smoking-related bladder tumorigenesis through inhibiting cytochrome P450 pathway and regulating tumor immune microenvironment.</p>\\n </div>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"39 12\",\"pages\":\"5357-5370\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24409\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24409","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
RB1 Mutations Induce Smoking-Related Bladder Cancer by Modulating the Cytochrome P450 Pathway
Cigarette smoking causes multiple cancers by directly influencing mutation burden of driver mutations. However, the mechanism between somatic mutation caused by cigarette smoking and bladder tumorigenesis remains elusive. Smoking-related mutation profile of bladder cancer was characterized by The Cancer Genome Atlas cohort. Integraticve OncoGenomics database was utilized to detect the smoking-related driver genes, and its biological mechanism predictions were interpreted based on bulk transcriptome and single-cell transcriptome, as well as cell experiments. Cigarette smoking was associated with an increased tumor mutational burden under 65 years old (p = 0.031), and generated specific mutational signatures in smokers. RB1 was identified as a differentially mutated driver gene between smokers and nonsmokers, and the mutation rate of RB1 increased twofold after smoking (p = 0.008). RB1 mutations and the 4-aminobiphenyl interference could significantly decrease the RB1 expression level and thus promote the proliferation, invasion, and migration ability of bladder cancer cells. Enrichment analysis and real-time quantitative PCR (RT-qPCR) data showed that RB1 mutations inhibited cytochrome P450 pathway by reducing expression levels of UGT1A6 and AKR1C2. In addition, we also observed that the component of immunological cells was regulated by RB1 mutations through the stronger cell-to-cell interactions between epithelial scissor+ cells and immune cells in smokers. This study highlighted that RB1 mutations could drive smoking-related bladder tumorigenesis through inhibiting cytochrome P450 pathway and regulating tumor immune microenvironment.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.