{"title":"细胞冷藏期间加压溶解氙气的保护作用与温度有关。","authors":"Kenshi Mimura, Rina Sakai, Kazuhiro Yoshida, Masanobu Ujihira","doi":"10.3233/BME-240105","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The preservation period afforded by cold storage of cells is short. However, the use of rare gases for cold storage as a means of extending the period of preservation would be highly beneficial.</p><p><strong>Objective: </strong>To examine the effect of temperature on the protective effect of cold storage of cells using pressurized dissolution of xenon gas, with particular focus on the inhibition of substance transport by viscosity.</p><p><strong>Methods: </strong>Human dermal fibroblast monolayers incubated in a culture dish for 48 h were used as a test sample, with culture medium used as a preservation solution. Samples were placed into a pressure-resistant vessel, which was pressurized with xenon gas at 0 or 0.5 MPa, and cells were stored at 0 to 5 °C for 18 h. Cell activity was evaluated by tetrazolium salt assay. The viscosity of the medium under pressurization at each storage temperature was estimated.</p><p><strong>Results: </strong>The maximum protective effect against cell damage of cold storage with pressurized dissolution of xenon gas was observed at 4 °C. An increase in estimated viscosity by pressurization was correlated with increased cell activity at 4 °C.</p><p><strong>Conclusion: </strong>Analysis of the temperature dependence of the protective effect against cell damage of cold storage with pressurized dissolution of xenon gas revealed that the most effective temperature is 4 °C. The data also suggest that increased viscosity due to pressurization plays a role in the protective effect.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependence of the protective effect of pressurized dissolution of xenon gas during cold storage of cells.\",\"authors\":\"Kenshi Mimura, Rina Sakai, Kazuhiro Yoshida, Masanobu Ujihira\",\"doi\":\"10.3233/BME-240105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The preservation period afforded by cold storage of cells is short. However, the use of rare gases for cold storage as a means of extending the period of preservation would be highly beneficial.</p><p><strong>Objective: </strong>To examine the effect of temperature on the protective effect of cold storage of cells using pressurized dissolution of xenon gas, with particular focus on the inhibition of substance transport by viscosity.</p><p><strong>Methods: </strong>Human dermal fibroblast monolayers incubated in a culture dish for 48 h were used as a test sample, with culture medium used as a preservation solution. Samples were placed into a pressure-resistant vessel, which was pressurized with xenon gas at 0 or 0.5 MPa, and cells were stored at 0 to 5 °C for 18 h. Cell activity was evaluated by tetrazolium salt assay. The viscosity of the medium under pressurization at each storage temperature was estimated.</p><p><strong>Results: </strong>The maximum protective effect against cell damage of cold storage with pressurized dissolution of xenon gas was observed at 4 °C. An increase in estimated viscosity by pressurization was correlated with increased cell activity at 4 °C.</p><p><strong>Conclusion: </strong>Analysis of the temperature dependence of the protective effect against cell damage of cold storage with pressurized dissolution of xenon gas revealed that the most effective temperature is 4 °C. The data also suggest that increased viscosity due to pressurization plays a role in the protective effect.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BME-240105\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BME-240105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Temperature dependence of the protective effect of pressurized dissolution of xenon gas during cold storage of cells.
Background: The preservation period afforded by cold storage of cells is short. However, the use of rare gases for cold storage as a means of extending the period of preservation would be highly beneficial.
Objective: To examine the effect of temperature on the protective effect of cold storage of cells using pressurized dissolution of xenon gas, with particular focus on the inhibition of substance transport by viscosity.
Methods: Human dermal fibroblast monolayers incubated in a culture dish for 48 h were used as a test sample, with culture medium used as a preservation solution. Samples were placed into a pressure-resistant vessel, which was pressurized with xenon gas at 0 or 0.5 MPa, and cells were stored at 0 to 5 °C for 18 h. Cell activity was evaluated by tetrazolium salt assay. The viscosity of the medium under pressurization at each storage temperature was estimated.
Results: The maximum protective effect against cell damage of cold storage with pressurized dissolution of xenon gas was observed at 4 °C. An increase in estimated viscosity by pressurization was correlated with increased cell activity at 4 °C.
Conclusion: Analysis of the temperature dependence of the protective effect against cell damage of cold storage with pressurized dissolution of xenon gas revealed that the most effective temperature is 4 °C. The data also suggest that increased viscosity due to pressurization plays a role in the protective effect.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.