Niyati A Borkar, Michael A Thompson, Brian Kelley, Barnabas T Shiferaw, Samantha K Hamrick, Sathish Venkatachalem, Y S Prakash, Christina M Pabelick
{"title":"尼古丁诱导的ER应激和ASM细胞增殖由α7nAChR和伴侣蛋白-RIC-3及TMEM35介导","authors":"Niyati A Borkar, Michael A Thompson, Brian Kelley, Barnabas T Shiferaw, Samantha K Hamrick, Sathish Venkatachalem, Y S Prakash, Christina M Pabelick","doi":"10.1165/rcmb.2024-0194OC","DOIUrl":null,"url":null,"abstract":"<p><p>Nicotine exposure in the context of smoking or vaping worsens airway function. Although commonly thought to exert effects through the peripheral nervous system, we previously showed airway smooth muscle (ASM) expresses nicotinic acetylcholine receptors (nAChRs), particularly alpha7 subtype (α7nAChR) with functional effects on contractility and metabolism. However, the mechanisms of nAChR regulation and downstream effects in ASM are not fully understood. Using human ASM cells from non-asthmatics vs. mild-moderate asthmatics, we tested the hypothesis that nAChR-specific ER chaperones RIC-3 and TMEM35 promote cell surface localization of α7nAChR with downstream influence on its functionality: effects exacerbated by inflammation. We found that mild-moderate asthma and exposure to pro-inflammatory cytokines relevant to asthma promote chaperone and α7nAChR expression in ASM. Downstream, ER stress was linked to nicotine/α7nAChR signaling, where RIC-3 and TMEM35 regulate nicotine-induced ER stress, Ca<sup>2+</sup> regulation and ASM cell proliferation. Overall, our data highlights the importance α7nAChR chaperones in mediating and modulating nicotine effects in ASM towards airway contractility and remodeling.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nicotine-induced ER Stress and ASM Cell Proliferation is Mediated by α7nAChR and Chaperones-RIC-3 and TMEM35.\",\"authors\":\"Niyati A Borkar, Michael A Thompson, Brian Kelley, Barnabas T Shiferaw, Samantha K Hamrick, Sathish Venkatachalem, Y S Prakash, Christina M Pabelick\",\"doi\":\"10.1165/rcmb.2024-0194OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nicotine exposure in the context of smoking or vaping worsens airway function. Although commonly thought to exert effects through the peripheral nervous system, we previously showed airway smooth muscle (ASM) expresses nicotinic acetylcholine receptors (nAChRs), particularly alpha7 subtype (α7nAChR) with functional effects on contractility and metabolism. However, the mechanisms of nAChR regulation and downstream effects in ASM are not fully understood. Using human ASM cells from non-asthmatics vs. mild-moderate asthmatics, we tested the hypothesis that nAChR-specific ER chaperones RIC-3 and TMEM35 promote cell surface localization of α7nAChR with downstream influence on its functionality: effects exacerbated by inflammation. We found that mild-moderate asthma and exposure to pro-inflammatory cytokines relevant to asthma promote chaperone and α7nAChR expression in ASM. Downstream, ER stress was linked to nicotine/α7nAChR signaling, where RIC-3 and TMEM35 regulate nicotine-induced ER stress, Ca<sup>2+</sup> regulation and ASM cell proliferation. Overall, our data highlights the importance α7nAChR chaperones in mediating and modulating nicotine effects in ASM towards airway contractility and remodeling.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0194OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0194OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nicotine-induced ER Stress and ASM Cell Proliferation is Mediated by α7nAChR and Chaperones-RIC-3 and TMEM35.
Nicotine exposure in the context of smoking or vaping worsens airway function. Although commonly thought to exert effects through the peripheral nervous system, we previously showed airway smooth muscle (ASM) expresses nicotinic acetylcholine receptors (nAChRs), particularly alpha7 subtype (α7nAChR) with functional effects on contractility and metabolism. However, the mechanisms of nAChR regulation and downstream effects in ASM are not fully understood. Using human ASM cells from non-asthmatics vs. mild-moderate asthmatics, we tested the hypothesis that nAChR-specific ER chaperones RIC-3 and TMEM35 promote cell surface localization of α7nAChR with downstream influence on its functionality: effects exacerbated by inflammation. We found that mild-moderate asthma and exposure to pro-inflammatory cytokines relevant to asthma promote chaperone and α7nAChR expression in ASM. Downstream, ER stress was linked to nicotine/α7nAChR signaling, where RIC-3 and TMEM35 regulate nicotine-induced ER stress, Ca2+ regulation and ASM cell proliferation. Overall, our data highlights the importance α7nAChR chaperones in mediating and modulating nicotine effects in ASM towards airway contractility and remodeling.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.