Maria Ortiz-Paparoni, Joost Op ‘t Eynde, Christopher Eckersley, Concetta Morino, Mitchell Abrams, Derek Pang, Jason Kait, Frank Pintar, Narayan Yoganandan, Jason Moore, David Barnes, Kathryn Loftis, Cameron R. Bass
{"title":"人体腰椎在动态挤压下的扩展组合负荷损伤标准","authors":"Maria Ortiz-Paparoni, Joost Op ‘t Eynde, Christopher Eckersley, Concetta Morino, Mitchell Abrams, Derek Pang, Jason Kait, Frank Pintar, Narayan Yoganandan, Jason Moore, David Barnes, Kathryn Loftis, Cameron R. Bass","doi":"10.1007/s10439-024-03570-5","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary injury tolerance of the lumbar spine for under-body blast references axial compression and bending moments in a limited range. Since injuries often occur in a wider range of flexion and extension with increased moment contribution, this study expands a previously proposed combined loading injury criterion for the lumbar spine. Fifteen cadaveric lumbar spine failure tests with greater magnitudes of eccentric loading were incorporated into an existing injury criterion to augment its applicability and a combined loading injury risk model was proposed by means of survival analysis. A loglogistic distribution was the most representative of injury risk, resulting in optimized critical values of <i>F</i><sub><i>r</i>,crit</sub> = 6011 N, and <i>M</i><sub>y,crit</sub> = 904 Nm for the proposed combined loading metric. The 50% probability of injury resulted in a combined loading metric value of 1, with 0.59 and 1.7 corresponding to 5 and 95% injury risk, respectively. The inclusion of eccentric loaded specimens resulted in an increased contribution of the bending moment relative to the previously investigated flexion/extension range (previous <i>M</i><sub><i>y</i>,crit</sub> = 1155 Nm), with the contribution of the resultant sagittal force reduced by nearly 200 N (previous <i>F</i><sub><i>r</i>,crit</sub> = 5824 N). The new critical values reflect an expanded flexion/extension range of applicability of the previously proposed combined loading injury criterion for the human lumbar spine during dynamic compression.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10439-024-03570-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Expanded Combined Loading Injury Criterion for the Human Lumbar Spine Under Dynamic Compression\",\"authors\":\"Maria Ortiz-Paparoni, Joost Op ‘t Eynde, Christopher Eckersley, Concetta Morino, Mitchell Abrams, Derek Pang, Jason Kait, Frank Pintar, Narayan Yoganandan, Jason Moore, David Barnes, Kathryn Loftis, Cameron R. Bass\",\"doi\":\"10.1007/s10439-024-03570-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contemporary injury tolerance of the lumbar spine for under-body blast references axial compression and bending moments in a limited range. Since injuries often occur in a wider range of flexion and extension with increased moment contribution, this study expands a previously proposed combined loading injury criterion for the lumbar spine. Fifteen cadaveric lumbar spine failure tests with greater magnitudes of eccentric loading were incorporated into an existing injury criterion to augment its applicability and a combined loading injury risk model was proposed by means of survival analysis. A loglogistic distribution was the most representative of injury risk, resulting in optimized critical values of <i>F</i><sub><i>r</i>,crit</sub> = 6011 N, and <i>M</i><sub>y,crit</sub> = 904 Nm for the proposed combined loading metric. The 50% probability of injury resulted in a combined loading metric value of 1, with 0.59 and 1.7 corresponding to 5 and 95% injury risk, respectively. The inclusion of eccentric loaded specimens resulted in an increased contribution of the bending moment relative to the previously investigated flexion/extension range (previous <i>M</i><sub><i>y</i>,crit</sub> = 1155 Nm), with the contribution of the resultant sagittal force reduced by nearly 200 N (previous <i>F</i><sub><i>r</i>,crit</sub> = 5824 N). The new critical values reflect an expanded flexion/extension range of applicability of the previously proposed combined loading injury criterion for the human lumbar spine during dynamic compression.</p></div>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10439-024-03570-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10439-024-03570-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03570-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Expanded Combined Loading Injury Criterion for the Human Lumbar Spine Under Dynamic Compression
Contemporary injury tolerance of the lumbar spine for under-body blast references axial compression and bending moments in a limited range. Since injuries often occur in a wider range of flexion and extension with increased moment contribution, this study expands a previously proposed combined loading injury criterion for the lumbar spine. Fifteen cadaveric lumbar spine failure tests with greater magnitudes of eccentric loading were incorporated into an existing injury criterion to augment its applicability and a combined loading injury risk model was proposed by means of survival analysis. A loglogistic distribution was the most representative of injury risk, resulting in optimized critical values of Fr,crit = 6011 N, and My,crit = 904 Nm for the proposed combined loading metric. The 50% probability of injury resulted in a combined loading metric value of 1, with 0.59 and 1.7 corresponding to 5 and 95% injury risk, respectively. The inclusion of eccentric loaded specimens resulted in an increased contribution of the bending moment relative to the previously investigated flexion/extension range (previous My,crit = 1155 Nm), with the contribution of the resultant sagittal force reduced by nearly 200 N (previous Fr,crit = 5824 N). The new critical values reflect an expanded flexion/extension range of applicability of the previously proposed combined loading injury criterion for the human lumbar spine during dynamic compression.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.