独立于 DXA BMD 和 FRAX:骨微结构国际联盟 (BoMIC) 前瞻性队列的皮质和小梁骨微结构缺陷会增加短期骨折风险。

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Marine Sarfati, Roland Chapurlat, Alyssa B Dufour, Elisabeth Sornay-Rendu, Blandine Merle, Steven K Boyd, Danielle E Whittier, David A Hanley, David Goltzman, Pawel Szulc, Andy Kin On Wong, Eric Lespessailles, Sundeep Khosla, Serge Ferrari, Emmanuel Biver, Claes Ohlsson, Mattias Lorentzon, Dan Mellström, Maria Nethander, Elizabeth J Samelson, Douglas P Kiel, Marian T Hannan, Mary L Bouxsein
{"title":"独立于 DXA BMD 和 FRAX:骨微结构国际联盟 (BoMIC) 前瞻性队列的皮质和小梁骨微结构缺陷会增加短期骨折风险。","authors":"Marine Sarfati, Roland Chapurlat, Alyssa B Dufour, Elisabeth Sornay-Rendu, Blandine Merle, Steven K Boyd, Danielle E Whittier, David A Hanley, David Goltzman, Pawel Szulc, Andy Kin On Wong, Eric Lespessailles, Sundeep Khosla, Serge Ferrari, Emmanuel Biver, Claes Ohlsson, Mattias Lorentzon, Dan Mellström, Maria Nethander, Elizabeth J Samelson, Douglas P Kiel, Marian T Hannan, Mary L Bouxsein","doi":"10.1093/jbmr/zjae143","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying individuals at risk for short-term fracture is essential to offer prompt beneficial treatment, especially since many fractures occur in those without osteoporosis by DXA-aBMD. We evaluated whether deficits in bone microarchitecture and density predict short-term fracture risk independent of the clinical predictors, DXA-BMD and FRAX. We combined data from eight cohorts to conduct a prospective study of bone microarchitecture at the distal radius and tibia (by HR-pQCT) and 2-year incidence of fracture (non-traumatic and traumatic) in 7327 individuals (4824 women, 2503 men, mean 69 ± 9 years). We estimated sex-specific hazard ratios (HR) for associations between bone measures and 2-year fracture incidence, adjusted for age, cohort, height, and weight, and then additionally adjusted for FN aBMD or FRAX for major osteoporotic fracture. Only 7% of study participants had FN T-score ≤ -2.5, whereas 53% had T-scores between -1.0 and -2.5 and 37% had T-scores ≥-1.0. Two-year cumulative fracture incidence was 4% (296/7327). Each SD decrease in radius cortical bone measures increased fracture risk by 38%-76% for women and men. After additional adjustment for FN-aBMD, risks remained increased by 28%-61%. Radius trabecular measures were also associated with 2-year fracture risk independently of FN-aBMD in women (HRs range: 1.21 per SD for trabecular separation to 1.55 for total vBMD). Decreased failure load (FL) was associated with increased fracture risk in both women and men (FN-aBMD ranges of adjusted HR = 1.47-2.42). Tibia measurement results were similar to radius results. Findings were also similar when models were adjusted for FRAX. In older adults, FL and HR-pQCT measures of cortical and trabecular bone microarchitecture and density with strong associations to short-term fractures improved fracture prediction beyond aBMD and FRAX. Thus, HR-pQCT may be a useful adjunct to traditional assessment of short-term fracture risk in older adults, including those with T-scores above the osteoporosis range.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1574-1583"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Short-term risk of fracture is increased by deficits in cortical and trabecular bone microarchitecture independent of DXA BMD and FRAX: Bone Microarchitecture International Consortium (BoMIC) prospective cohorts.\",\"authors\":\"Marine Sarfati, Roland Chapurlat, Alyssa B Dufour, Elisabeth Sornay-Rendu, Blandine Merle, Steven K Boyd, Danielle E Whittier, David A Hanley, David Goltzman, Pawel Szulc, Andy Kin On Wong, Eric Lespessailles, Sundeep Khosla, Serge Ferrari, Emmanuel Biver, Claes Ohlsson, Mattias Lorentzon, Dan Mellström, Maria Nethander, Elizabeth J Samelson, Douglas P Kiel, Marian T Hannan, Mary L Bouxsein\",\"doi\":\"10.1093/jbmr/zjae143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying individuals at risk for short-term fracture is essential to offer prompt beneficial treatment, especially since many fractures occur in those without osteoporosis by DXA-aBMD. We evaluated whether deficits in bone microarchitecture and density predict short-term fracture risk independent of the clinical predictors, DXA-BMD and FRAX. We combined data from eight cohorts to conduct a prospective study of bone microarchitecture at the distal radius and tibia (by HR-pQCT) and 2-year incidence of fracture (non-traumatic and traumatic) in 7327 individuals (4824 women, 2503 men, mean 69 ± 9 years). We estimated sex-specific hazard ratios (HR) for associations between bone measures and 2-year fracture incidence, adjusted for age, cohort, height, and weight, and then additionally adjusted for FN aBMD or FRAX for major osteoporotic fracture. Only 7% of study participants had FN T-score ≤ -2.5, whereas 53% had T-scores between -1.0 and -2.5 and 37% had T-scores ≥-1.0. Two-year cumulative fracture incidence was 4% (296/7327). Each SD decrease in radius cortical bone measures increased fracture risk by 38%-76% for women and men. After additional adjustment for FN-aBMD, risks remained increased by 28%-61%. Radius trabecular measures were also associated with 2-year fracture risk independently of FN-aBMD in women (HRs range: 1.21 per SD for trabecular separation to 1.55 for total vBMD). Decreased failure load (FL) was associated with increased fracture risk in both women and men (FN-aBMD ranges of adjusted HR = 1.47-2.42). Tibia measurement results were similar to radius results. Findings were also similar when models were adjusted for FRAX. In older adults, FL and HR-pQCT measures of cortical and trabecular bone microarchitecture and density with strong associations to short-term fractures improved fracture prediction beyond aBMD and FRAX. Thus, HR-pQCT may be a useful adjunct to traditional assessment of short-term fracture risk in older adults, including those with T-scores above the osteoporosis range.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"1574-1583\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae143\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae143","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

要想及时提供有益的治疗,识别有短期骨折风险的人至关重要,尤其是因为许多骨折发生在通过 DXA-ABMD 检查没有骨质疏松症的人身上。我们评估了骨微结构和骨密度的缺陷是否能预测短期骨折风险,而不受临床预测指标、DXA-BMD 和 FRAX 的影响。我们合并了八个队列的数据,对 7327 人(女性 4824 人,男性 2503 人,平均 69 ± 9 岁)的桡骨和胫骨远端骨微结构(通过 HR-pQCT)和 2 年骨折(非创伤性和创伤性)发病率进行了前瞻性研究。我们估算了骨测量值与 2 年骨折发生率之间的性别特异性危险比(HR),并对年龄、队列、身高和体重进行了调整,然后对股骨颈(FN)aBMD 或 FRAX 进行了额外调整,以确定是否发生了重大骨质疏松性骨折。只有7%的研究参与者的股骨颈T值≤-2.5,而53%的研究参与者的股骨颈T值介于-1.0至-2.5之间,37%的研究参与者的股骨颈T值≥-1.0。两年累计骨折发生率为 4%(296/7327)。女性和男性的桡骨皮质骨量每减少一个 SD 值,骨折风险就会增加 38%-76% 。在对 FN-aBMD 进行额外调整后,风险仍增加了 28%-61% 。在女性中,桡骨小梁测量值也与2年骨折风险相关,而与FN-aBMD无关(HRs范围:小梁分离值每标准差为1.21,总vBMD为1.55)。在女性和男性中,失效负荷的降低与骨折风险的增加有关(FN-aBMD 的调整 HR 范围 = 1.47-2.42)。胫骨测量结果与桡骨测量结果相似。根据 FRAX 调整模型后的结果也相似。在老年人中,与短期骨折密切相关的皮质和小梁骨质微结构和密度的失效负荷和 HR-pQCT 测量方法提高了骨折预测能力,超过了 aBMD 和 FRAX。因此,HR-pQCT 可能是传统的老年人短期骨折风险评估的有效辅助手段,包括那些 T 值高于骨质疏松症范围的老年人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term risk of fracture is increased by deficits in cortical and trabecular bone microarchitecture independent of DXA BMD and FRAX: Bone Microarchitecture International Consortium (BoMIC) prospective cohorts.

Identifying individuals at risk for short-term fracture is essential to offer prompt beneficial treatment, especially since many fractures occur in those without osteoporosis by DXA-aBMD. We evaluated whether deficits in bone microarchitecture and density predict short-term fracture risk independent of the clinical predictors, DXA-BMD and FRAX. We combined data from eight cohorts to conduct a prospective study of bone microarchitecture at the distal radius and tibia (by HR-pQCT) and 2-year incidence of fracture (non-traumatic and traumatic) in 7327 individuals (4824 women, 2503 men, mean 69 ± 9 years). We estimated sex-specific hazard ratios (HR) for associations between bone measures and 2-year fracture incidence, adjusted for age, cohort, height, and weight, and then additionally adjusted for FN aBMD or FRAX for major osteoporotic fracture. Only 7% of study participants had FN T-score ≤ -2.5, whereas 53% had T-scores between -1.0 and -2.5 and 37% had T-scores ≥-1.0. Two-year cumulative fracture incidence was 4% (296/7327). Each SD decrease in radius cortical bone measures increased fracture risk by 38%-76% for women and men. After additional adjustment for FN-aBMD, risks remained increased by 28%-61%. Radius trabecular measures were also associated with 2-year fracture risk independently of FN-aBMD in women (HRs range: 1.21 per SD for trabecular separation to 1.55 for total vBMD). Decreased failure load (FL) was associated with increased fracture risk in both women and men (FN-aBMD ranges of adjusted HR = 1.47-2.42). Tibia measurement results were similar to radius results. Findings were also similar when models were adjusted for FRAX. In older adults, FL and HR-pQCT measures of cortical and trabecular bone microarchitecture and density with strong associations to short-term fractures improved fracture prediction beyond aBMD and FRAX. Thus, HR-pQCT may be a useful adjunct to traditional assessment of short-term fracture risk in older adults, including those with T-scores above the osteoporosis range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信