超高容量钠金属电池的稳定循环。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huwei Wang, Jiali Wang, Wei Li, Junyang Hu, Jiahui Dong, Dengyun Zhai, Feiyu Kang
{"title":"超高容量钠金属电池的稳定循环。","authors":"Huwei Wang,&nbsp;Jiali Wang,&nbsp;Wei Li,&nbsp;Junyang Hu,&nbsp;Jiahui Dong,&nbsp;Dengyun Zhai,&nbsp;Feiyu Kang","doi":"10.1002/adma.202409062","DOIUrl":null,"url":null,"abstract":"<p>The development of sodium metal batteries has long been impeded by dendrite formation issues. State-of-the-art strategies, exemplified by sodiophilic hosting/seeding layers, have demonstrated great success in suppressing dendrite formation. However, addressing high-capacity applications (&gt;10 mAh cm<sup>−2</sup>) remains a significant challenge. Herein, the study revisits the interlayer strategy by simply covering a carbon nanotube (CNT) film onto the surface of a sodium metal anode, unlocking its overlooked potential for ultrahigh capacity applications. In situ Raman spectroscopy reveals the interlayer's fast-ion-storage feature, enabling deposition at the interface without capacity limitations. Consequently, in symmetric cells, one-year long-term reversible cycling and a record-high capacity of 50 mAh cm<sup>−2</sup> under 90% depth of discharge is achieved, representing a significant breakthrough for stabilizing Na anode. Furthermore, the full cell with a 50-µm thin metal anode and a high-loading Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode (12 mg cm<sup>−2</sup>) delivers a stable capacity of 94 mAh g<sup>−1</sup> for 270 cycles (94% capacity retention).</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 45","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Cycling of Na Metal Batteries at Ultrahigh Capacity\",\"authors\":\"Huwei Wang,&nbsp;Jiali Wang,&nbsp;Wei Li,&nbsp;Junyang Hu,&nbsp;Jiahui Dong,&nbsp;Dengyun Zhai,&nbsp;Feiyu Kang\",\"doi\":\"10.1002/adma.202409062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of sodium metal batteries has long been impeded by dendrite formation issues. State-of-the-art strategies, exemplified by sodiophilic hosting/seeding layers, have demonstrated great success in suppressing dendrite formation. However, addressing high-capacity applications (&gt;10 mAh cm<sup>−2</sup>) remains a significant challenge. Herein, the study revisits the interlayer strategy by simply covering a carbon nanotube (CNT) film onto the surface of a sodium metal anode, unlocking its overlooked potential for ultrahigh capacity applications. In situ Raman spectroscopy reveals the interlayer's fast-ion-storage feature, enabling deposition at the interface without capacity limitations. Consequently, in symmetric cells, one-year long-term reversible cycling and a record-high capacity of 50 mAh cm<sup>−2</sup> under 90% depth of discharge is achieved, representing a significant breakthrough for stabilizing Na anode. Furthermore, the full cell with a 50-µm thin metal anode and a high-loading Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode (12 mg cm<sup>−2</sup>) delivers a stable capacity of 94 mAh g<sup>−1</sup> for 270 cycles (94% capacity retention).</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 45\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409062\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,钠金属电池的发展一直受到枝晶形成问题的阻碍。最先进的策略,如亲水宿主/播种层,在抑制枝晶形成方面取得了巨大成功。然而,解决高容量应用(>10 mAh cm-2)仍然是一项重大挑战。本研究重新审视了层间策略,只需在钠金属阳极表面覆盖一层碳纳米管(CNT)薄膜,就能释放其在超高容量应用中被忽视的潜力。原位拉曼光谱揭示了夹层的快速离子存储特性,从而使界面沉积不受容量限制。因此,在对称电池中,可实现一年的长期可逆循环,并在 90% 的放电深度下达到 50 mAh cm-2 的创纪录高容量,这是在稳定 Na 阳极方面的重大突破。此外,采用 50 微米薄金属阳极和高负载 Na3V2(PO4)3 阴极(12 毫克厘米-2)的全电池在 270 个循环周期(94% 的容量保持率)内可提供 94 毫安时 g-1 的稳定容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable Cycling of Na Metal Batteries at Ultrahigh Capacity

Stable Cycling of Na Metal Batteries at Ultrahigh Capacity

Stable Cycling of Na Metal Batteries at Ultrahigh Capacity

The development of sodium metal batteries has long been impeded by dendrite formation issues. State-of-the-art strategies, exemplified by sodiophilic hosting/seeding layers, have demonstrated great success in suppressing dendrite formation. However, addressing high-capacity applications (>10 mAh cm−2) remains a significant challenge. Herein, the study revisits the interlayer strategy by simply covering a carbon nanotube (CNT) film onto the surface of a sodium metal anode, unlocking its overlooked potential for ultrahigh capacity applications. In situ Raman spectroscopy reveals the interlayer's fast-ion-storage feature, enabling deposition at the interface without capacity limitations. Consequently, in symmetric cells, one-year long-term reversible cycling and a record-high capacity of 50 mAh cm−2 under 90% depth of discharge is achieved, representing a significant breakthrough for stabilizing Na anode. Furthermore, the full cell with a 50-µm thin metal anode and a high-loading Na3V2(PO4)3 cathode (12 mg cm−2) delivers a stable capacity of 94 mAh g−1 for 270 cycles (94% capacity retention).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信